|
|
|
@ -16,6 +16,8 @@
|
|
|
|
|
#include "common/vector_math.h"
|
|
|
|
|
#include "common/logging/log.h"
|
|
|
|
|
|
|
|
|
|
#include "pica_types.h"
|
|
|
|
|
|
|
|
|
|
namespace Pica {
|
|
|
|
|
|
|
|
|
|
// Returns index corresponding to the Regs member labeled by field_name
|
|
|
|
@ -239,7 +241,8 @@ struct Regs {
|
|
|
|
|
TextureConfig texture0;
|
|
|
|
|
INSERT_PADDING_WORDS(0x8);
|
|
|
|
|
BitField<0, 4, TextureFormat> texture0_format;
|
|
|
|
|
INSERT_PADDING_WORDS(0x2);
|
|
|
|
|
BitField<0, 1, u32> fragment_lighting_enable;
|
|
|
|
|
INSERT_PADDING_WORDS(0x1);
|
|
|
|
|
TextureConfig texture1;
|
|
|
|
|
BitField<0, 4, TextureFormat> texture1_format;
|
|
|
|
|
INSERT_PADDING_WORDS(0x2);
|
|
|
|
@ -641,7 +644,268 @@ struct Regs {
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
INSERT_PADDING_WORDS(0xe0);
|
|
|
|
|
INSERT_PADDING_WORDS(0x20);
|
|
|
|
|
|
|
|
|
|
enum class LightingSampler {
|
|
|
|
|
Distribution0 = 0,
|
|
|
|
|
Distribution1 = 1,
|
|
|
|
|
Fresnel = 3,
|
|
|
|
|
ReflectBlue = 4,
|
|
|
|
|
ReflectGreen = 5,
|
|
|
|
|
ReflectRed = 6,
|
|
|
|
|
SpotlightAttenuation = 8,
|
|
|
|
|
DistanceAttenuation = 16,
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Pica fragment lighting supports using different LUTs for each lighting component:
|
|
|
|
|
* Reflectance R, G, and B channels, distribution function for specular components 0 and 1,
|
|
|
|
|
* fresnel factor, and spotlight attenuation. Furthermore, which LUTs are used for each channel
|
|
|
|
|
* (or whether a channel is enabled at all) is specified by various pre-defined lighting
|
|
|
|
|
* configurations. With configurations that require more LUTs, more cycles are required on HW to
|
|
|
|
|
* perform lighting computations.
|
|
|
|
|
*/
|
|
|
|
|
enum class LightingConfig {
|
|
|
|
|
Config0 = 0, ///< Reflect Red, Distribution 0, Spotlight
|
|
|
|
|
Config1 = 1, ///< Reflect Red, Fresnel, Spotlight
|
|
|
|
|
Config2 = 2, ///< Reflect Red, Distribution 0/1
|
|
|
|
|
Config3 = 3, ///< Distribution 0/1, Fresnel
|
|
|
|
|
Config4 = 4, ///< Reflect Red/Green/Blue, Distribution 0/1, Spotlight
|
|
|
|
|
Config5 = 5, ///< Reflect Red/Green/Blue, Distribution 0, Fresnel, Spotlight
|
|
|
|
|
Config6 = 6, ///< Reflect Red, Distribution 0/1, Fresnel, Spotlight
|
|
|
|
|
Config7 = 8, ///< Reflect Red/Green/Blue, Distribution 0/1, Fresnel, Spotlight
|
|
|
|
|
///< NOTE: '8' is intentional, '7' does not appear to be a valid configuration
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
/// Selects which lighting components are affected by fresnel
|
|
|
|
|
enum class LightingFresnelSelector {
|
|
|
|
|
None = 0, ///< Fresnel is disabled
|
|
|
|
|
PrimaryAlpha = 1, ///< Primary (diffuse) lighting alpha is affected by fresnel
|
|
|
|
|
SecondaryAlpha = 2, ///< Secondary (specular) lighting alpha is affected by fresnel
|
|
|
|
|
Both = PrimaryAlpha | SecondaryAlpha, ///< Both primary and secondary lighting alphas are affected by fresnel
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
/// Factor used to scale the output of a lighting LUT
|
|
|
|
|
enum class LightingScale {
|
|
|
|
|
Scale1 = 0, ///< Scale is 1x
|
|
|
|
|
Scale2 = 1, ///< Scale is 2x
|
|
|
|
|
Scale4 = 2, ///< Scale is 4x
|
|
|
|
|
Scale8 = 3, ///< Scale is 8x
|
|
|
|
|
Scale1_4 = 6, ///< Scale is 0.25x
|
|
|
|
|
Scale1_2 = 7, ///< Scale is 0.5x
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
enum class LightingLutInput {
|
|
|
|
|
NH = 0, // Cosine of the angle between the normal and half-angle vectors
|
|
|
|
|
VH = 1, // Cosine of the angle between the view and half-angle vectors
|
|
|
|
|
NV = 2, // Cosine of the angle between the normal and the view vector
|
|
|
|
|
LN = 3, // Cosine of the angle between the light and the normal vectors
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
enum class LightingBumpMode : u32 {
|
|
|
|
|
None = 0,
|
|
|
|
|
NormalMap = 1,
|
|
|
|
|
TangentMap = 2,
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
union LightColor {
|
|
|
|
|
BitField< 0, 10, u32> b;
|
|
|
|
|
BitField<10, 10, u32> g;
|
|
|
|
|
BitField<20, 10, u32> r;
|
|
|
|
|
|
|
|
|
|
Math::Vec3f ToVec3f() const {
|
|
|
|
|
// These fields are 10 bits wide, however 255 corresponds to 1.0f for each color component
|
|
|
|
|
return Math::MakeVec((f32)r / 255.f, (f32)g / 255.f, (f32)b / 255.f);
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
/// Returns true if the specified lighting sampler is supported by the current Pica lighting configuration
|
|
|
|
|
static bool IsLightingSamplerSupported(LightingConfig config, LightingSampler sampler) {
|
|
|
|
|
switch (sampler) {
|
|
|
|
|
case LightingSampler::Distribution0:
|
|
|
|
|
return (config != LightingConfig::Config1);
|
|
|
|
|
|
|
|
|
|
case LightingSampler::Distribution1:
|
|
|
|
|
return (config != LightingConfig::Config0) && (config != LightingConfig::Config1) && (config != LightingConfig::Config5);
|
|
|
|
|
|
|
|
|
|
case LightingSampler::Fresnel:
|
|
|
|
|
return (config != LightingConfig::Config0) && (config != LightingConfig::Config2) && (config != LightingConfig::Config4);
|
|
|
|
|
|
|
|
|
|
case LightingSampler::ReflectRed:
|
|
|
|
|
return (config != LightingConfig::Config3);
|
|
|
|
|
|
|
|
|
|
case LightingSampler::ReflectGreen:
|
|
|
|
|
case LightingSampler::ReflectBlue:
|
|
|
|
|
return (config == LightingConfig::Config4) || (config == LightingConfig::Config5) || (config == LightingConfig::Config7);
|
|
|
|
|
}
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
struct {
|
|
|
|
|
struct LightSrc {
|
|
|
|
|
LightColor specular_0; // material.specular_0 * light.specular_0
|
|
|
|
|
LightColor specular_1; // material.specular_1 * light.specular_1
|
|
|
|
|
LightColor diffuse; // material.diffuse * light.diffuse
|
|
|
|
|
LightColor ambient; // material.ambient * light.ambient
|
|
|
|
|
|
|
|
|
|
struct {
|
|
|
|
|
// Encoded as 16-bit floating point
|
|
|
|
|
union {
|
|
|
|
|
BitField< 0, 16, u32> x;
|
|
|
|
|
BitField<16, 16, u32> y;
|
|
|
|
|
};
|
|
|
|
|
union {
|
|
|
|
|
BitField< 0, 16, u32> z;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
INSERT_PADDING_WORDS(0x3);
|
|
|
|
|
|
|
|
|
|
union {
|
|
|
|
|
BitField<0, 1, u32> directional;
|
|
|
|
|
BitField<1, 1, u32> two_sided_diffuse; // When disabled, clamp dot-product to 0
|
|
|
|
|
};
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
BitField<0, 20, u32> dist_atten_bias;
|
|
|
|
|
BitField<0, 20, u32> dist_atten_scale;
|
|
|
|
|
|
|
|
|
|
INSERT_PADDING_WORDS(0x4);
|
|
|
|
|
};
|
|
|
|
|
static_assert(sizeof(LightSrc) == 0x10 * sizeof(u32), "LightSrc structure must be 0x10 words");
|
|
|
|
|
|
|
|
|
|
LightSrc light[8];
|
|
|
|
|
LightColor global_ambient; // Emission + (material.ambient * lighting.ambient)
|
|
|
|
|
INSERT_PADDING_WORDS(0x1);
|
|
|
|
|
BitField<0, 3, u32> num_lights; // Number of enabled lights - 1
|
|
|
|
|
|
|
|
|
|
union {
|
|
|
|
|
BitField< 2, 2, LightingFresnelSelector> fresnel_selector;
|
|
|
|
|
BitField< 4, 4, LightingConfig> config;
|
|
|
|
|
BitField<22, 2, u32> bump_selector; // 0: Texture 0, 1: Texture 1, 2: Texture 2
|
|
|
|
|
BitField<27, 1, u32> clamp_highlights;
|
|
|
|
|
BitField<28, 2, LightingBumpMode> bump_mode;
|
|
|
|
|
BitField<30, 1, u32> disable_bump_renorm;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
union {
|
|
|
|
|
BitField<16, 1, u32> disable_lut_d0;
|
|
|
|
|
BitField<17, 1, u32> disable_lut_d1;
|
|
|
|
|
BitField<19, 1, u32> disable_lut_fr;
|
|
|
|
|
BitField<20, 1, u32> disable_lut_rr;
|
|
|
|
|
BitField<21, 1, u32> disable_lut_rg;
|
|
|
|
|
BitField<22, 1, u32> disable_lut_rb;
|
|
|
|
|
|
|
|
|
|
// Each bit specifies whether distance attenuation should be applied for the
|
|
|
|
|
// corresponding light
|
|
|
|
|
|
|
|
|
|
BitField<24, 1, u32> disable_dist_atten_light_0;
|
|
|
|
|
BitField<25, 1, u32> disable_dist_atten_light_1;
|
|
|
|
|
BitField<26, 1, u32> disable_dist_atten_light_2;
|
|
|
|
|
BitField<27, 1, u32> disable_dist_atten_light_3;
|
|
|
|
|
BitField<28, 1, u32> disable_dist_atten_light_4;
|
|
|
|
|
BitField<29, 1, u32> disable_dist_atten_light_5;
|
|
|
|
|
BitField<30, 1, u32> disable_dist_atten_light_6;
|
|
|
|
|
BitField<31, 1, u32> disable_dist_atten_light_7;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
bool IsDistAttenDisabled(unsigned index) const {
|
|
|
|
|
const unsigned disable[] = { disable_dist_atten_light_0, disable_dist_atten_light_1,
|
|
|
|
|
disable_dist_atten_light_2, disable_dist_atten_light_3,
|
|
|
|
|
disable_dist_atten_light_4, disable_dist_atten_light_5,
|
|
|
|
|
disable_dist_atten_light_6, disable_dist_atten_light_7 };
|
|
|
|
|
return disable[index] != 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
union {
|
|
|
|
|
BitField<0, 8, u32> index; ///< Index at which to set data in the LUT
|
|
|
|
|
BitField<8, 5, u32> type; ///< Type of LUT for which to set data
|
|
|
|
|
} lut_config;
|
|
|
|
|
|
|
|
|
|
BitField<0, 1, u32> disable;
|
|
|
|
|
INSERT_PADDING_WORDS(0x1);
|
|
|
|
|
|
|
|
|
|
// When data is written to any of these registers, it gets written to the lookup table of
|
|
|
|
|
// the selected type at the selected index, specified above in the `lut_config` register.
|
|
|
|
|
// With each write, `lut_config.index` is incremented. It does not matter which of these
|
|
|
|
|
// registers is written to, the behavior will be the same.
|
|
|
|
|
u32 lut_data[8];
|
|
|
|
|
|
|
|
|
|
// These are used to specify if absolute (abs) value should be used for each LUT index. When
|
|
|
|
|
// abs mode is disabled, LUT indexes are in the range of (-1.0, 1.0). Otherwise, they are in
|
|
|
|
|
// the range of (0.0, 1.0).
|
|
|
|
|
union {
|
|
|
|
|
BitField< 1, 1, u32> disable_d0;
|
|
|
|
|
BitField< 5, 1, u32> disable_d1;
|
|
|
|
|
BitField< 9, 1, u32> disable_sp;
|
|
|
|
|
BitField<13, 1, u32> disable_fr;
|
|
|
|
|
BitField<17, 1, u32> disable_rb;
|
|
|
|
|
BitField<21, 1, u32> disable_rg;
|
|
|
|
|
BitField<25, 1, u32> disable_rr;
|
|
|
|
|
} abs_lut_input;
|
|
|
|
|
|
|
|
|
|
union {
|
|
|
|
|
BitField< 0, 3, LightingLutInput> d0;
|
|
|
|
|
BitField< 4, 3, LightingLutInput> d1;
|
|
|
|
|
BitField< 8, 3, LightingLutInput> sp;
|
|
|
|
|
BitField<12, 3, LightingLutInput> fr;
|
|
|
|
|
BitField<16, 3, LightingLutInput> rb;
|
|
|
|
|
BitField<20, 3, LightingLutInput> rg;
|
|
|
|
|
BitField<24, 3, LightingLutInput> rr;
|
|
|
|
|
} lut_input;
|
|
|
|
|
|
|
|
|
|
union {
|
|
|
|
|
BitField< 0, 3, LightingScale> d0;
|
|
|
|
|
BitField< 4, 3, LightingScale> d1;
|
|
|
|
|
BitField< 8, 3, LightingScale> sp;
|
|
|
|
|
BitField<12, 3, LightingScale> fr;
|
|
|
|
|
BitField<16, 3, LightingScale> rb;
|
|
|
|
|
BitField<20, 3, LightingScale> rg;
|
|
|
|
|
BitField<24, 3, LightingScale> rr;
|
|
|
|
|
|
|
|
|
|
static float GetScale(LightingScale scale) {
|
|
|
|
|
switch (scale) {
|
|
|
|
|
case LightingScale::Scale1:
|
|
|
|
|
return 1.0f;
|
|
|
|
|
case LightingScale::Scale2:
|
|
|
|
|
return 2.0f;
|
|
|
|
|
case LightingScale::Scale4:
|
|
|
|
|
return 4.0f;
|
|
|
|
|
case LightingScale::Scale8:
|
|
|
|
|
return 8.0f;
|
|
|
|
|
case LightingScale::Scale1_4:
|
|
|
|
|
return 0.25f;
|
|
|
|
|
case LightingScale::Scale1_2:
|
|
|
|
|
return 0.5f;
|
|
|
|
|
}
|
|
|
|
|
return 0.0f;
|
|
|
|
|
}
|
|
|
|
|
} lut_scale;
|
|
|
|
|
|
|
|
|
|
INSERT_PADDING_WORDS(0x6);
|
|
|
|
|
|
|
|
|
|
union {
|
|
|
|
|
// There are 8 light enable "slots", corresponding to the total number of lights
|
|
|
|
|
// supported by Pica. For N enabled lights (specified by register 0x1c2, or 'src_num'
|
|
|
|
|
// above), the first N slots below will be set to integers within the range of 0-7,
|
|
|
|
|
// corresponding to the actual light that is enabled for each slot.
|
|
|
|
|
|
|
|
|
|
BitField< 0, 3, u32> slot_0;
|
|
|
|
|
BitField< 4, 3, u32> slot_1;
|
|
|
|
|
BitField< 8, 3, u32> slot_2;
|
|
|
|
|
BitField<12, 3, u32> slot_3;
|
|
|
|
|
BitField<16, 3, u32> slot_4;
|
|
|
|
|
BitField<20, 3, u32> slot_5;
|
|
|
|
|
BitField<24, 3, u32> slot_6;
|
|
|
|
|
BitField<28, 3, u32> slot_7;
|
|
|
|
|
|
|
|
|
|
unsigned GetNum(unsigned index) const {
|
|
|
|
|
const unsigned enable_slots[] = { slot_0, slot_1, slot_2, slot_3, slot_4, slot_5, slot_6, slot_7 };
|
|
|
|
|
return enable_slots[index];
|
|
|
|
|
}
|
|
|
|
|
} light_enable;
|
|
|
|
|
} lighting;
|
|
|
|
|
|
|
|
|
|
INSERT_PADDING_WORDS(0x26);
|
|
|
|
|
|
|
|
|
|
enum class VertexAttributeFormat : u64 {
|
|
|
|
|
BYTE = 0,
|
|
|
|
@ -990,6 +1254,7 @@ ASSERT_REG_POSITION(viewport_corner, 0x68);
|
|
|
|
|
ASSERT_REG_POSITION(texture0_enable, 0x80);
|
|
|
|
|
ASSERT_REG_POSITION(texture0, 0x81);
|
|
|
|
|
ASSERT_REG_POSITION(texture0_format, 0x8e);
|
|
|
|
|
ASSERT_REG_POSITION(fragment_lighting_enable, 0x8f);
|
|
|
|
|
ASSERT_REG_POSITION(texture1, 0x91);
|
|
|
|
|
ASSERT_REG_POSITION(texture1_format, 0x96);
|
|
|
|
|
ASSERT_REG_POSITION(texture2, 0x99);
|
|
|
|
@ -1004,6 +1269,7 @@ ASSERT_REG_POSITION(tev_stage5, 0xf8);
|
|
|
|
|
ASSERT_REG_POSITION(tev_combiner_buffer_color, 0xfd);
|
|
|
|
|
ASSERT_REG_POSITION(output_merger, 0x100);
|
|
|
|
|
ASSERT_REG_POSITION(framebuffer, 0x110);
|
|
|
|
|
ASSERT_REG_POSITION(lighting, 0x140);
|
|
|
|
|
ASSERT_REG_POSITION(vertex_attributes, 0x200);
|
|
|
|
|
ASSERT_REG_POSITION(index_array, 0x227);
|
|
|
|
|
ASSERT_REG_POSITION(num_vertices, 0x228);
|
|
|
|
@ -1026,118 +1292,6 @@ static_assert(sizeof(Regs::ShaderConfig) == 0x30 * sizeof(u32), "ShaderConfig st
|
|
|
|
|
static_assert(sizeof(Regs) <= 0x300 * sizeof(u32), "Register set structure larger than it should be");
|
|
|
|
|
static_assert(sizeof(Regs) >= 0x300 * sizeof(u32), "Register set structure smaller than it should be");
|
|
|
|
|
|
|
|
|
|
struct float24 {
|
|
|
|
|
static float24 FromFloat32(float val) {
|
|
|
|
|
float24 ret;
|
|
|
|
|
ret.value = val;
|
|
|
|
|
return ret;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// 16 bit mantissa, 7 bit exponent, 1 bit sign
|
|
|
|
|
// TODO: No idea if this works as intended
|
|
|
|
|
static float24 FromRawFloat24(u32 hex) {
|
|
|
|
|
float24 ret;
|
|
|
|
|
if ((hex & 0xFFFFFF) == 0) {
|
|
|
|
|
ret.value = 0;
|
|
|
|
|
} else {
|
|
|
|
|
u32 mantissa = hex & 0xFFFF;
|
|
|
|
|
u32 exponent = (hex >> 16) & 0x7F;
|
|
|
|
|
u32 sign = hex >> 23;
|
|
|
|
|
ret.value = std::pow(2.0f, (float)exponent-63.0f) * (1.0f + mantissa * std::pow(2.0f, -16.f));
|
|
|
|
|
if (sign)
|
|
|
|
|
ret.value = -ret.value;
|
|
|
|
|
}
|
|
|
|
|
return ret;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static float24 Zero() {
|
|
|
|
|
return FromFloat32(0.f);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Not recommended for anything but logging
|
|
|
|
|
float ToFloat32() const {
|
|
|
|
|
return value;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
float24 operator * (const float24& flt) const {
|
|
|
|
|
if ((this->value == 0.f && !std::isnan(flt.value)) ||
|
|
|
|
|
(flt.value == 0.f && !std::isnan(this->value)))
|
|
|
|
|
// PICA gives 0 instead of NaN when multiplying by inf
|
|
|
|
|
return Zero();
|
|
|
|
|
return float24::FromFloat32(ToFloat32() * flt.ToFloat32());
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
float24 operator / (const float24& flt) const {
|
|
|
|
|
return float24::FromFloat32(ToFloat32() / flt.ToFloat32());
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
float24 operator + (const float24& flt) const {
|
|
|
|
|
return float24::FromFloat32(ToFloat32() + flt.ToFloat32());
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
float24 operator - (const float24& flt) const {
|
|
|
|
|
return float24::FromFloat32(ToFloat32() - flt.ToFloat32());
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
float24& operator *= (const float24& flt) {
|
|
|
|
|
if ((this->value == 0.f && !std::isnan(flt.value)) ||
|
|
|
|
|
(flt.value == 0.f && !std::isnan(this->value)))
|
|
|
|
|
// PICA gives 0 instead of NaN when multiplying by inf
|
|
|
|
|
*this = Zero();
|
|
|
|
|
else value *= flt.ToFloat32();
|
|
|
|
|
return *this;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
float24& operator /= (const float24& flt) {
|
|
|
|
|
value /= flt.ToFloat32();
|
|
|
|
|
return *this;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
float24& operator += (const float24& flt) {
|
|
|
|
|
value += flt.ToFloat32();
|
|
|
|
|
return *this;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
float24& operator -= (const float24& flt) {
|
|
|
|
|
value -= flt.ToFloat32();
|
|
|
|
|
return *this;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
float24 operator - () const {
|
|
|
|
|
return float24::FromFloat32(-ToFloat32());
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
bool operator < (const float24& flt) const {
|
|
|
|
|
return ToFloat32() < flt.ToFloat32();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
bool operator > (const float24& flt) const {
|
|
|
|
|
return ToFloat32() > flt.ToFloat32();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
bool operator >= (const float24& flt) const {
|
|
|
|
|
return ToFloat32() >= flt.ToFloat32();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
bool operator <= (const float24& flt) const {
|
|
|
|
|
return ToFloat32() <= flt.ToFloat32();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
bool operator == (const float24& flt) const {
|
|
|
|
|
return ToFloat32() == flt.ToFloat32();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
bool operator != (const float24& flt) const {
|
|
|
|
|
return ToFloat32() != flt.ToFloat32();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
private:
|
|
|
|
|
// Stored as a regular float, merely for convenience
|
|
|
|
|
// TODO: Perform proper arithmetic on this!
|
|
|
|
|
float value;
|
|
|
|
|
};
|
|
|
|
|
static_assert(sizeof(float24) == sizeof(float), "Shader JIT assumes float24 is implemented as a 32-bit float");
|
|
|
|
|
|
|
|
|
|
/// Struct used to describe current Pica state
|
|
|
|
|
struct State {
|
|
|
|
|
/// Pica registers
|
|
|
|
@ -1163,6 +1317,25 @@ struct State {
|
|
|
|
|
ShaderSetup vs;
|
|
|
|
|
ShaderSetup gs;
|
|
|
|
|
|
|
|
|
|
struct {
|
|
|
|
|
union LutEntry {
|
|
|
|
|
// Used for raw access
|
|
|
|
|
u32 raw;
|
|
|
|
|
|
|
|
|
|
// LUT value, encoded as 12-bit fixed point, with 12 fraction bits
|
|
|
|
|
BitField< 0, 12, u32> value;
|
|
|
|
|
|
|
|
|
|
// Used by HW for efficient interpolation, Citra does not use these
|
|
|
|
|
BitField<12, 12, u32> difference;
|
|
|
|
|
|
|
|
|
|
float ToFloat() {
|
|
|
|
|
return static_cast<float>(value) / 4095.f;
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
std::array<std::array<LutEntry, 256>, 24> luts;
|
|
|
|
|
} lighting;
|
|
|
|
|
|
|
|
|
|
/// Current Pica command list
|
|
|
|
|
struct {
|
|
|
|
|
const u32* head_ptr;
|
|
|
|
|