added mem_map hardware writing

pull/8/head
ShizZy 11 years ago
parent 030c836793
commit bf3938d56e

@ -75,27 +75,6 @@ static MemoryView g_views[] =
static const int kNumMemViews = sizeof(g_views) / sizeof(MemoryView); ///< Number of mem views static const int kNumMemViews = sizeof(g_views) / sizeof(MemoryView); ///< Number of mem views
u8 Read8(const u32 addr) {
return 0xDE;
}
u16 Read16(const u32 addr) {
return 0xDEAD;
}
u32 Read32(const u32 addr) {
return 0xDEADBEEF;
}
void Write8(const u32 addr, const u32 data) {
}
void Write16(const u32 addr, const u32 data) {
}
void Write32(const u32 addr, const u32 data) {
}
void Init() { void Init() {
int flags = 0; int flags = 0;
@ -104,7 +83,7 @@ void Init() {
g_views[i].size = MEM_FCRAM_SIZE; g_views[i].size = MEM_FCRAM_SIZE;
} }
INFO_LOG(MEMMAP, "Memory system initialized. RAM at %p (mirror at 0 @ %p)", g_fcram, NOTICE_LOG(MEMMAP, "Memory system initialized. RAM at %p (mirror at 0 @ %p)", g_fcram,
g_physical_fcram); g_physical_fcram);
} }
@ -113,7 +92,7 @@ void Shutdown() {
MemoryMap_Shutdown(g_views, kNumMemViews, flags, &g_arena); MemoryMap_Shutdown(g_views, kNumMemViews, flags, &g_arena);
g_arena.ReleaseSpace(); g_arena.ReleaseSpace();
g_base = NULL; g_base = NULL;
INFO_LOG(MEMMAP, "Memory system shut down."); NOTICE_LOG(MEMMAP, "Memory system shut down.");
} }

@ -67,6 +67,9 @@ u8 Read8(const u32 addr);
u16 Read16(const u32 addr); u16 Read16(const u32 addr);
u32 Read32(const u32 addr); u32 Read32(const u32 addr);
u32 Read8_ZX(const u32 addr);
u32 Read16_ZX(const u32 addr);
void Write8(const u32 addr, const u32 data); void Write8(const u32 addr, const u32 data);
void Write16(const u32 addr, const u32 data); void Write16(const u32 addr, const u32 data);
void Write32(const u32 addr, const u32 data); void Write32(const u32 addr, const u32 data);

@ -29,22 +29,22 @@
namespace Memory { namespace Memory {
/* /*
u8 *GetPointer(const u32 address) u8 *GetPointer(const u32 addr)
{ {
if ((address & 0x3E000000) == 0x08000000) { if ((addr & 0x3E000000) == 0x08000000) {
return g_fcram + (address & MEM_FCRAM_MASK); return g_fcram + (addr & MEM_FCRAM_MASK);
} }
else if ((address & 0x3F800000) == 0x04000000) { else if ((addr & 0x3F800000) == 0x04000000) {
return m_pVRAM + (address & VRAM_MASK); return m_pVRAM + (addr & VRAM_MASK);
} }
else if ((address & 0x3F000000) >= 0x08000000 && (address & 0x3F000000) < 0x08000000 + g_MemorySize) { else if ((addr & 0x3F000000) >= 0x08000000 && (addr & 0x3F000000) < 0x08000000 + g_MemorySize) {
return m_pRAM + (address & g_MemoryMask); return m_pRAM + (addr & g_MemoryMask);
} }
else { else {
ERROR_LOG(MEMMAP, "Unknown GetPointer %08x PC %08x LR %08x", address, currentMIPS->pc, currentMIPS->r[MIPS_REG_RA]); ERROR_LOG(MEMMAP, "Unknown GetPointer %08x PC %08x LR %08x", addr, currentMIPS->pc, currentMIPS->r[MIPS_REG_RA]);
static bool reported = false; static bool reported = false;
if (!reported) { if (!reported) {
Reporting::ReportMessage("Unknown GetPointer %08x PC %08x LR %08x", address, currentMIPS->pc, currentMIPS->r[MIPS_REG_RA]); Reporting::ReportMessage("Unknown GetPointer %08x PC %08x LR %08x", addr, currentMIPS->pc, currentMIPS->r[MIPS_REG_RA]);
reported = true; reported = true;
} }
if (!g_Config.bIgnoreBadMemAccess) { if (!g_Config.bIgnoreBadMemAccess) {
@ -56,102 +56,121 @@ u8 *GetPointer(const u32 address)
}*/ }*/
template <typename T> template <typename T>
inline void ReadFromHardware(T &var, const u32 address) inline void ReadFromHardware(T &var, const u32 addr)
{ {
// TODO: Figure out the fastest order of tests for both read and write (they are probably different). // TODO: Figure out the fastest order of tests for both read and write (they are probably different).
// TODO: Make sure this represents the mirrors in a correct way. // TODO: Make sure this represents the mirrors in a correct way.
// Could just do a base-relative read, too.... TODO // Could just do a base-relative read, too.... TODO
if ((address & 0x3E000000) == 0x08000000) { if ((addr & 0x3E000000) == 0x08000000) {
var = *((const T*)&g_fcram[address & MEM_FCRAM_MASK]); var = *((const T*)&g_fcram[addr & MEM_FCRAM_MASK]);
} }
/*else if ((address & 0x3F800000) == 0x04000000) { /*else if ((addr & 0x3F800000) == 0x04000000) {
var = *((const T*)&m_pVRAM[address & VRAM_MASK]); var = *((const T*)&m_pVRAM[addr & VRAM_MASK]);
}*/ }*/
else { else {
_assert_msg_(MEMMAP, false, "unknown hardware read"); _assert_msg_(MEMMAP, false, "unknown hardware read");
// WARN_LOG(MEMMAP, "ReadFromHardware: Invalid address %08x PC %08x LR %08x", address, currentMIPS->pc, currentMIPS->r[MIPS_REG_RA]); // WARN_LOG(MEMMAP, "ReadFromHardware: Invalid addr %08x PC %08x LR %08x", addr, currentMIPS->pc, currentMIPS->r[MIPS_REG_RA]);
} }
} }
template <typename T> template <typename T>
inline void WriteToHardware(u32 address, const T data) inline void WriteToHardware(u32 addr, const T data) {
{ NOTICE_LOG(MEMMAP, "Test1 %08X", addr);
// Could just do a base-relative write, too.... TODO // ExeFS:/.code is loaded here:
if ((addr & 0xFFF00000) == 0x00100000) {
if ((address & 0x3E000000) == 0x08000000) { // TODO(ShizZy): This is dumb... handle correctly. From 3DBrew:
*(T*)&g_fcram[address & MEM_FCRAM_MASK] = data; // http://3dbrew.org/wiki/Memory_layout#ARM11_User-land_memory_regions
} // The ExeFS:/.code is loaded here, executables must be loaded to the 0x00100000 region when
/*else if ((address & 0x3F800000) == 0x04000000) { // the exheader "special memory" flag is clear. The 0x03F00000-byte size restriction only
*(T*)&m_pVRAM[address & VRAM_MASK] = data; // applies when this flag is clear. Executables are usually loaded to 0x14000000 when the
}*/ // exheader "special memory" flag is set, however this address can be arbitrary.
else { *(T*)&g_fcram[addr & MEM_FCRAM_MASK] = data;
NOTICE_LOG(MEMMAP, "Test2");
// Heap mapped by ControlMemory:
} else if ((addr & 0x3E000000) == 0x08000000) {
// TODO(ShizZy): Writes to this virtual address should be put in physical memory at FCRAM + GSP
// heap size... the following is writing to FCRAM + 0, which is actually supposed to be the
// application's GSP heap
*(T*)&g_fcram[addr & MEM_FCRAM_MASK] = data;
} else if ((addr & 0xFF000000) == 0x14000000) {
_assert_msg_(MEMMAP, false, "umimplemented write to GSP heap");
} else if ((addr & 0xFFF00000) == 0x1EC00000) {
_assert_msg_(MEMMAP, false, "umimplemented write to IO registers");
} else if ((addr & 0xFF000000) == 0x1F000000) {
_assert_msg_(MEMMAP, false, "umimplemented write to VRAM");
} else if ((addr & 0xFFF00000) == 0x1FF00000) {
_assert_msg_(MEMMAP, false, "umimplemented write to DSP memory");
} else if ((addr & 0xFFFF0000) == 0x1FF80000) {
_assert_msg_(MEMMAP, false, "umimplemented write to Configuration Memory");
} else if ((addr & 0xFFFFF000) == 0x1FF81000) {
_assert_msg_(MEMMAP, false, "umimplemented write to shared page");
} else {
_assert_msg_(MEMMAP, false, "unknown hardware write"); _assert_msg_(MEMMAP, false, "unknown hardware write");
// WARN_LOG(MEMMAP, "WriteToHardware: Invalid address %08x PC %08x LR %08x", address, currentMIPS->pc, currentMIPS->r[MIPS_REG_RA]);
} }
} }
bool IsValidAddress(const u32 address) { bool IsValidAddress(const u32 addr) {
if ((address & 0x3E000000) == 0x08000000) { if ((addr & 0x3E000000) == 0x08000000) {
return true; return true;
} else if ((address & 0x3F800000) == 0x04000000) { } else if ((addr & 0x3F800000) == 0x04000000) {
return true; return true;
} else if ((address & 0xBFFF0000) == 0x00010000) { } else if ((addr & 0xBFFF0000) == 0x00010000) {
return true; return true;
} else if ((address & 0x3F000000) >= 0x08000000 && (address & 0x3F000000) < 0x08000000 + MEM_FCRAM_MASK) { } else if ((addr & 0x3F000000) >= 0x08000000 && (addr & 0x3F000000) < 0x08000000 + MEM_FCRAM_MASK) {
return true; return true;
} else { } else {
return false; return false;
} }
} }
u8 Read_U8(const u32 _Address) { u8 Read8(const u32 addr) {
u8 _var = 0; u8 _var = 0;
ReadFromHardware<u8>(_var, _Address); ReadFromHardware<u8>(_var, addr);
return (u8)_var; return (u8)_var;
} }
u16 Read_U16(const u32 _Address) { u16 Read16(const u32 addr) {
u16_le _var = 0; u16_le _var = 0;
ReadFromHardware<u16_le>(_var, _Address); ReadFromHardware<u16_le>(_var, addr);
return (u16)_var; return (u16)_var;
} }
u32 Read_U32(const u32 _Address) { u32 Read32(const u32 addr) {
u32_le _var = 0; u32_le _var = 0;
ReadFromHardware<u32_le>(_var, _Address); ReadFromHardware<u32_le>(_var, addr);
return _var; return _var;
} }
u64 Read_U64(const u32 _Address) { u64 Read64(const u32 addr) {
u64_le _var = 0; u64_le _var = 0;
ReadFromHardware<u64_le>(_var, _Address); ReadFromHardware<u64_le>(_var, addr);
return _var; return _var;
} }
u32 Read_U8_ZX(const u32 _Address) { u32 Read8_ZX(const u32 addr) {
return (u32)Read_U8(_Address); return (u32)Read8(addr);
} }
u32 Read_U16_ZX(const u32 _Address) { u32 Read16_ZX(const u32 addr) {
return (u32)Read_U16(_Address); return (u32)Read16(addr);
} }
void Write_U8(const u8 _Data, const u32 _Address) { void Write8(const u32 addr, const u8 data) {
WriteToHardware<u8>(_Address, _Data); WriteToHardware<u8>(addr, data);
} }
void Write_U16(const u16 _Data, const u32 _Address) { void Write16(const u32 addr, const u16 data) {
WriteToHardware<u16_le>(_Address, _Data); WriteToHardware<u16_le>(addr, data);
} }
void Write_U32(const u32 _Data, const u32 _Address) { void Write32(const u32 addr, const u32 data) {
WriteToHardware<u32_le>(_Address, _Data); WriteToHardware<u32_le>(addr, data);
} }
void Write_U64(const u64 _Data, const u32 _Address) { void Write64(const u32 addr, const u64 data) {
WriteToHardware<u64_le>(_Address, _Data); WriteToHardware<u64_le>(addr, data);
} }
} // namespace } // namespace

Loading…
Cancel
Save