thread/process: Move TLS slot marking/freeing to the process class

Allows making several members of the process class private, it also
avoids going through Core::CurrentProcess() just to retrieve the owning
process.
pull/8/head
Lioncash 6 years ago
parent 1db1e013e0
commit acfc801d14

@ -128,6 +128,64 @@ void Process::Run(VAddr entry_point, s32 main_thread_priority, u32 stack_size) {
Kernel::SetupMainThread(kernel, entry_point, main_thread_priority, *this); Kernel::SetupMainThread(kernel, entry_point, main_thread_priority, *this);
} }
/**
* Finds a free location for the TLS section of a thread.
* @param tls_slots The TLS page array of the thread's owner process.
* Returns a tuple of (page, slot, alloc_needed) where:
* page: The index of the first allocated TLS page that has free slots.
* slot: The index of the first free slot in the indicated page.
* alloc_needed: Whether there's a need to allocate a new TLS page (All pages are full).
*/
static std::tuple<std::size_t, std::size_t, bool> FindFreeThreadLocalSlot(
const std::vector<std::bitset<8>>& tls_slots) {
// Iterate over all the allocated pages, and try to find one where not all slots are used.
for (std::size_t page = 0; page < tls_slots.size(); ++page) {
const auto& page_tls_slots = tls_slots[page];
if (!page_tls_slots.all()) {
// We found a page with at least one free slot, find which slot it is
for (std::size_t slot = 0; slot < page_tls_slots.size(); ++slot) {
if (!page_tls_slots.test(slot)) {
return std::make_tuple(page, slot, false);
}
}
}
}
return std::make_tuple(0, 0, true);
}
VAddr Process::MarkNextAvailableTLSSlotAsUsed(Thread& thread) {
auto [available_page, available_slot, needs_allocation] = FindFreeThreadLocalSlot(tls_slots);
if (needs_allocation) {
tls_slots.emplace_back(0); // The page is completely available at the start
available_page = tls_slots.size() - 1;
available_slot = 0; // Use the first slot in the new page
// Allocate some memory from the end of the linear heap for this region.
auto& tls_memory = thread.GetTLSMemory();
tls_memory->insert(tls_memory->end(), Memory::PAGE_SIZE, 0);
vm_manager.RefreshMemoryBlockMappings(tls_memory.get());
vm_manager.MapMemoryBlock(Memory::TLS_AREA_VADDR + available_page * Memory::PAGE_SIZE,
tls_memory, 0, Memory::PAGE_SIZE, MemoryState::ThreadLocal);
}
tls_slots[available_page].set(available_slot);
return Memory::TLS_AREA_VADDR + available_page * Memory::PAGE_SIZE +
available_slot * Memory::TLS_ENTRY_SIZE;
}
void Process::FreeTLSSlot(VAddr tls_address) {
const VAddr tls_base = tls_address - Memory::TLS_AREA_VADDR;
const VAddr tls_page = tls_base / Memory::PAGE_SIZE;
const VAddr tls_slot = (tls_base % Memory::PAGE_SIZE) / Memory::TLS_ENTRY_SIZE;
tls_slots[tls_page].reset(tls_slot);
}
void Process::LoadModule(SharedPtr<CodeSet> module_, VAddr base_addr) { void Process::LoadModule(SharedPtr<CodeSet> module_, VAddr base_addr) {
const auto MapSegment = [&](CodeSet::Segment& segment, VMAPermission permissions, const auto MapSegment = [&](CodeSet::Segment& segment, VMAPermission permissions,
MemoryState memory_state) { MemoryState memory_state) {

@ -176,8 +176,25 @@ public:
/////////////////////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////////////////
// Memory Management // Memory Management
// Marks the next available region as used and returns the address of the slot.
VAddr MarkNextAvailableTLSSlotAsUsed(Thread& thread);
// Frees a used TLS slot identified by the given address
void FreeTLSSlot(VAddr tls_address);
ResultVal<VAddr> HeapAllocate(VAddr target, u64 size, VMAPermission perms);
ResultCode HeapFree(VAddr target, u32 size);
ResultCode MirrorMemory(VAddr dst_addr, VAddr src_addr, u64 size);
ResultCode UnmapMemory(VAddr dst_addr, VAddr src_addr, u64 size);
VMManager vm_manager; VMManager vm_manager;
private:
explicit Process(KernelCore& kernel);
~Process() override;
// Memory used to back the allocations in the regular heap. A single vector is used to cover // Memory used to back the allocations in the regular heap. A single vector is used to cover
// the entire virtual address space extents that bound the allocations, including any holes. // the entire virtual address space extents that bound the allocations, including any holes.
// This makes deallocation and reallocation of holes fast and keeps process memory contiguous // This makes deallocation and reallocation of holes fast and keeps process memory contiguous
@ -197,17 +214,6 @@ public:
std::vector<std::bitset<8>> tls_slots; std::vector<std::bitset<8>> tls_slots;
std::string name; std::string name;
ResultVal<VAddr> HeapAllocate(VAddr target, u64 size, VMAPermission perms);
ResultCode HeapFree(VAddr target, u32 size);
ResultCode MirrorMemory(VAddr dst_addr, VAddr src_addr, u64 size);
ResultCode UnmapMemory(VAddr dst_addr, VAddr src_addr, u64 size);
private:
explicit Process(KernelCore& kernel);
~Process() override;
}; };
} // namespace Kernel } // namespace Kernel

@ -65,10 +65,7 @@ void Thread::Stop() {
wait_objects.clear(); wait_objects.clear();
// Mark the TLS slot in the thread's page as free. // Mark the TLS slot in the thread's page as free.
const u64 tls_page = (tls_address - Memory::TLS_AREA_VADDR) / Memory::PAGE_SIZE; owner_process->FreeTLSSlot(tls_address);
const u64 tls_slot =
((tls_address - Memory::TLS_AREA_VADDR) % Memory::PAGE_SIZE) / Memory::TLS_ENTRY_SIZE;
Core::CurrentProcess()->tls_slots[tls_page].reset(tls_slot);
} }
void WaitCurrentThread_Sleep() { void WaitCurrentThread_Sleep() {
@ -177,32 +174,6 @@ void Thread::ResumeFromWait() {
Core::System::GetInstance().CpuCore(processor_id).PrepareReschedule(); Core::System::GetInstance().CpuCore(processor_id).PrepareReschedule();
} }
/**
* Finds a free location for the TLS section of a thread.
* @param tls_slots The TLS page array of the thread's owner process.
* Returns a tuple of (page, slot, alloc_needed) where:
* page: The index of the first allocated TLS page that has free slots.
* slot: The index of the first free slot in the indicated page.
* alloc_needed: Whether there's a need to allocate a new TLS page (All pages are full).
*/
static std::tuple<std::size_t, std::size_t, bool> GetFreeThreadLocalSlot(
const std::vector<std::bitset<8>>& tls_slots) {
// Iterate over all the allocated pages, and try to find one where not all slots are used.
for (std::size_t page = 0; page < tls_slots.size(); ++page) {
const auto& page_tls_slots = tls_slots[page];
if (!page_tls_slots.all()) {
// We found a page with at least one free slot, find which slot it is
for (std::size_t slot = 0; slot < page_tls_slots.size(); ++slot) {
if (!page_tls_slots.test(slot)) {
return std::make_tuple(page, slot, false);
}
}
}
}
return std::make_tuple(0, 0, true);
}
/** /**
* Resets a thread context, making it ready to be scheduled and run by the CPU * Resets a thread context, making it ready to be scheduled and run by the CPU
* @param context Thread context to reset * @param context Thread context to reset
@ -264,32 +235,7 @@ ResultVal<SharedPtr<Thread>> Thread::Create(KernelCore& kernel, std::string name
thread->owner_process = owner_process; thread->owner_process = owner_process;
thread->scheduler = Core::System::GetInstance().Scheduler(processor_id); thread->scheduler = Core::System::GetInstance().Scheduler(processor_id);
thread->scheduler->AddThread(thread, priority); thread->scheduler->AddThread(thread, priority);
thread->tls_address = thread->owner_process->MarkNextAvailableTLSSlotAsUsed(*thread);
// Find the next available TLS index, and mark it as used
auto& tls_slots = owner_process->tls_slots;
auto [available_page, available_slot, needs_allocation] = GetFreeThreadLocalSlot(tls_slots);
if (needs_allocation) {
tls_slots.emplace_back(0); // The page is completely available at the start
available_page = tls_slots.size() - 1;
available_slot = 0; // Use the first slot in the new page
// Allocate some memory from the end of the linear heap for this region.
const std::size_t offset = thread->tls_memory->size();
thread->tls_memory->insert(thread->tls_memory->end(), Memory::PAGE_SIZE, 0);
auto& vm_manager = owner_process->vm_manager;
vm_manager.RefreshMemoryBlockMappings(thread->tls_memory.get());
vm_manager.MapMemoryBlock(Memory::TLS_AREA_VADDR + available_page * Memory::PAGE_SIZE,
thread->tls_memory, 0, Memory::PAGE_SIZE,
MemoryState::ThreadLocal);
}
// Mark the slot as used
tls_slots[available_page].set(available_slot);
thread->tls_address = Memory::TLS_AREA_VADDR + available_page * Memory::PAGE_SIZE +
available_slot * Memory::TLS_ENTRY_SIZE;
// TODO(peachum): move to ScheduleThread() when scheduler is added so selected core is used // TODO(peachum): move to ScheduleThread() when scheduler is added so selected core is used
// to initialize the context // to initialize the context

@ -62,6 +62,9 @@ enum class ThreadWakeupReason {
class Thread final : public WaitObject { class Thread final : public WaitObject {
public: public:
using TLSMemory = std::vector<u8>;
using TLSMemoryPtr = std::shared_ptr<TLSMemory>;
/** /**
* Creates and returns a new thread. The new thread is immediately scheduled * Creates and returns a new thread. The new thread is immediately scheduled
* @param kernel The kernel instance this thread will be created under. * @param kernel The kernel instance this thread will be created under.
@ -134,6 +137,14 @@ public:
return thread_id; return thread_id;
} }
TLSMemoryPtr& GetTLSMemory() {
return tls_memory;
}
const TLSMemoryPtr& GetTLSMemory() const {
return tls_memory;
}
/** /**
* Resumes a thread from waiting * Resumes a thread from waiting
*/ */
@ -269,7 +280,7 @@ private:
explicit Thread(KernelCore& kernel); explicit Thread(KernelCore& kernel);
~Thread() override; ~Thread() override;
std::shared_ptr<std::vector<u8>> tls_memory = std::make_shared<std::vector<u8>>(); TLSMemoryPtr tls_memory = std::make_shared<TLSMemory>();
}; };
/** /**

Loading…
Cancel
Save