|
|
@ -243,17 +243,17 @@ std::optional<s64> CoreTiming::Advance() {
|
|
|
|
basic_lock.lock();
|
|
|
|
basic_lock.lock();
|
|
|
|
|
|
|
|
|
|
|
|
if (evt.reschedule_time != 0) {
|
|
|
|
if (evt.reschedule_time != 0) {
|
|
|
|
|
|
|
|
const auto next_schedule_time{new_schedule_time.has_value()
|
|
|
|
|
|
|
|
? new_schedule_time.value().count()
|
|
|
|
|
|
|
|
: evt.reschedule_time};
|
|
|
|
|
|
|
|
|
|
|
|
// If this event was scheduled into a pause, its time now is going to be way behind.
|
|
|
|
// If this event was scheduled into a pause, its time now is going to be way behind.
|
|
|
|
// Re-set this event to continue from the end of the pause.
|
|
|
|
// Re-set this event to continue from the end of the pause.
|
|
|
|
auto next_time{evt.time + evt.reschedule_time};
|
|
|
|
auto next_time{evt.time + next_schedule_time};
|
|
|
|
if (evt.time < pause_end_time) {
|
|
|
|
if (evt.time < pause_end_time) {
|
|
|
|
next_time = pause_end_time + evt.reschedule_time;
|
|
|
|
next_time = pause_end_time + next_schedule_time;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
const auto next_schedule_time{new_schedule_time.has_value()
|
|
|
|
|
|
|
|
? new_schedule_time.value().count()
|
|
|
|
|
|
|
|
: evt.reschedule_time};
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
event_queue.emplace_back(
|
|
|
|
event_queue.emplace_back(
|
|
|
|
Event{next_time, event_fifo_id++, evt.user_data, evt.type, next_schedule_time});
|
|
|
|
Event{next_time, event_fifo_id++, evt.user_data, evt.type, next_schedule_time});
|
|
|
|
std::push_heap(event_queue.begin(), event_queue.end(), std::greater<>());
|
|
|
|
std::push_heap(event_queue.begin(), event_queue.end(), std::greater<>());
|
|
|
@ -264,8 +264,7 @@ std::optional<s64> CoreTiming::Advance() {
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
if (!event_queue.empty()) {
|
|
|
|
if (!event_queue.empty()) {
|
|
|
|
const s64 next_time = event_queue.front().time - global_timer;
|
|
|
|
return event_queue.front().time;
|
|
|
|
return next_time;
|
|
|
|
|
|
|
|
} else {
|
|
|
|
} else {
|
|
|
|
return std::nullopt;
|
|
|
|
return std::nullopt;
|
|
|
|
}
|
|
|
|
}
|
|
|
@ -278,11 +277,28 @@ void CoreTiming::ThreadLoop() {
|
|
|
|
paused_set = false;
|
|
|
|
paused_set = false;
|
|
|
|
const auto next_time = Advance();
|
|
|
|
const auto next_time = Advance();
|
|
|
|
if (next_time) {
|
|
|
|
if (next_time) {
|
|
|
|
if (*next_time > 0) {
|
|
|
|
// There are more events left in the queue, sleep until the next event.
|
|
|
|
std::chrono::nanoseconds next_time_ns = std::chrono::nanoseconds(*next_time);
|
|
|
|
const auto diff_ns{*next_time - GetGlobalTimeNs().count()};
|
|
|
|
event.WaitFor(next_time_ns);
|
|
|
|
if (diff_ns > 0) {
|
|
|
|
|
|
|
|
// Only try to sleep if the remaining time is >= 1ms. Take off 500 microseconds
|
|
|
|
|
|
|
|
// from the target time to account for possible over-sleeping, and spin the
|
|
|
|
|
|
|
|
// remaining.
|
|
|
|
|
|
|
|
const auto sleep_time_ns{diff_ns - 500LL * 1'000LL};
|
|
|
|
|
|
|
|
const auto sleep_time_ms{sleep_time_ns / 1'000'000LL};
|
|
|
|
|
|
|
|
if (sleep_time_ms >= 1) {
|
|
|
|
|
|
|
|
event.WaitFor(std::chrono::nanoseconds(sleep_time_ns));
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
const auto end_time{std::chrono::nanoseconds(*next_time)};
|
|
|
|
|
|
|
|
while (!paused && !event.IsSet() && GetGlobalTimeNs() < end_time) {
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if (event.IsSet()) {
|
|
|
|
|
|
|
|
event.Reset();
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
} else {
|
|
|
|
|
|
|
|
// Queue is empty, wait until another event is scheduled and signals us to continue.
|
|
|
|
wait_set = true;
|
|
|
|
wait_set = true;
|
|
|
|
event.Wait();
|
|
|
|
event.Wait();
|
|
|
|
}
|
|
|
|
}
|
|
|
|