You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
qt-plugins/widgetstyle/phantomcolor.cpp

424 lines
14 KiB
C++

/*
* HSLuv-C: Human-friendly HSL
* <http://github.com/hsluv/hsluv-c>
* <http://www.hsluv.org/>
*
* Copyright (c) 2015 Alexei Boronine (original idea, JavaScript implementation)
* Copyright (c) 2015 Roger Tallada (Obj-C implementation)
* Copyright (c) 2017 Martin Mitas (C implementation, based on Obj-C implementation)
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "phantomcolor.h"
#include <cfloat>
#include <cmath>
namespace Phantom
{
namespace
{
// Th`ese declarations originate from hsluv.h, from the hsluv-c library. The
// hpluv functions have been removed, as they are unnecessary for Phantom.
/**
* Convert HSLuv to RGB.
*
* @param h Hue. Between 0.0 and 360.0.
* @param s Saturation. Between 0.0 and 100.0.
* @param l Lightness. Between 0.0 and 100.0.
* @param[out] pr Red component. Between 0.0 and 1.0.
* @param[out] pr Green component. Between 0.0 and 1.0.
* @param[out] pr Blue component. Between 0.0 and 1.0.
*/
void hsluv2rgb(double h, double s, double l, double* pr, double* pg, double* pb);
/**
* Convert RGB to HSLuv.
*
* @param r Red component. Between 0.0 and 1.0.
* @param g Green component. Between 0.0 and 1.0.
* @param b Blue component. Between 0.0 and 1.0.
* @param[out] ph Hue. Between 0.0 and 360.0.
* @param[out] ps Saturation. Between 0.0 and 100.0.
* @param[out] pl Lightness. Between 0.0 and 100.0.
*/
void rgb2hsluv(double r, double g, double b, double* ph, double* ps, double* pl);
// Contents below originate from hsluv.c from the hsluv-c library. They have
// been wrapped in a C++ namespace to avoid collisions and to reduce the
// translation unit count, and hsluv's own sRGB conversion code has been
// stripped out (sRGB conversion is now performed in the Phantom color code
// when going to/from the Rgb type.)
//
// If you need to update the hsluv-c code, be mindful of the removed sRGB
// conversions -- you will need to make similar modifications to the upstream
// hsluv-c code. Also note that that the hpluv (pastel) functions have been
// removed, as they are not used in Phantom.
typedef struct Triplet_tag Triplet;
struct Triplet_tag
{
double a;
double b;
double c;
};
/* for RGB */
const Triplet m[3] = {{3.24096994190452134377, -1.53738317757009345794, -0.49861076029300328366},
{-0.96924363628087982613, 1.87596750150772066772, 0.04155505740717561247},
{0.05563007969699360846, -0.20397695888897656435, 1.05697151424287856072}};
/* for XYZ */
const Triplet m_inv[3] = {{0.41239079926595948129, 0.35758433938387796373, 0.18048078840183428751},
{0.21263900587151035754, 0.71516867876775592746, 0.07219231536073371500},
{0.01933081871559185069, 0.11919477979462598791, 0.95053215224966058086}};
const double ref_u = 0.19783000664283680764;
const double ref_v = 0.46831999493879100370;
const double kappa = 903.29629629629629629630;
const double epsilon = 0.00885645167903563082;
typedef struct Bounds_tag Bounds;
struct Bounds_tag
{
double a;
double b;
};
void get_bounds(double l, Bounds bounds[6])
{
double tl = l + 16.0;
double sub1 = (tl * tl * tl) / 1560896.0;
double sub2 = (sub1 > epsilon ? sub1 : (l / kappa));
int channel;
int t;
for (channel = 0; channel < 3; channel++) {
double m1 = m[channel].a;
double m2 = m[channel].b;
double m3 = m[channel].c;
for (t = 0; t < 2; t++) {
double top1 = (284517.0 * m1 - 94839.0 * m3) * sub2;
double top2 = (838422.0 * m3 + 769860.0 * m2 + 731718.0 * m1) * l * sub2 - 769860.0 * t * l;
double bottom = (632260.0 * m3 - 126452.0 * m2) * sub2 + 126452.0 * t;
bounds[channel * 2 + t].a = top1 / bottom;
bounds[channel * 2 + t].b = top2 / bottom;
}
}
}
double ray_length_until_intersect(double theta, const Bounds* line)
{
return line->b / (sin(theta) - line->a * cos(theta));
}
double max_chroma_for_lh(double l, double h)
{
double min_len = DBL_MAX;
double hrad = h * 0.01745329251994329577; /* (2 * pi / 360) */
Bounds bounds[6];
int i;
get_bounds(l, bounds);
for (i = 0; i < 6; i++) {
double len = ray_length_until_intersect(hrad, &bounds[i]);
if (len >= 0 && len < min_len)
min_len = len;
}
return min_len;
}
double dot_product(const Triplet* t1, const Triplet* t2)
{
return (t1->a * t2->a + t1->b * t2->b + t1->c * t2->c);
}
void xyz2rgb(Triplet* in_out)
{
double r = dot_product(&m[0], in_out);
double g = dot_product(&m[1], in_out);
double b = dot_product(&m[2], in_out);
in_out->a = r;
in_out->b = g;
in_out->c = b;
}
void rgb2xyz(Triplet* in_out)
{
Triplet rgbl = {in_out->a, in_out->b, in_out->c};
double x = dot_product(&m_inv[0], &rgbl);
double y = dot_product(&m_inv[1], &rgbl);
double z = dot_product(&m_inv[2], &rgbl);
in_out->a = x;
in_out->b = y;
in_out->c = z;
}
/* http://en.wikipedia.org/wiki/CIELUV
* In these formulas, Yn refers to the reference white point. We are using
* illuminant D65, so Yn (see refY in Maxima file) equals 1. The formula is
* simplified accordingly.
*/
double y2l(double y)
{
if (y <= epsilon) {
return y * kappa;
} else {
return 116.0 * cbrt(y) - 16.0;
}
}
double l2y(double l)
{
if (l <= 8.0) {
return l / kappa;
} else {
double x = (l + 16.0) / 116.0;
return (x * x * x);
}
}
void xyz2luv(Triplet* in_out)
{
double divisor = in_out->a + (15.0 * in_out->b) + (3.0 * in_out->c);
if (divisor <= 0.00000001) {
in_out->a = 0.0;
in_out->b = 0.0;
in_out->c = 0.0;
return;
}
double var_u = (4.0 * in_out->a) / divisor;
double var_v = (9.0 * in_out->b) / divisor;
double l = y2l(in_out->b);
double u = 13.0 * l * (var_u - ref_u);
double v = 13.0 * l * (var_v - ref_v);
in_out->a = l;
if (l < 0.00000001) {
in_out->b = 0.0;
in_out->c = 0.0;
} else {
in_out->b = u;
in_out->c = v;
}
}
void luv2xyz(Triplet* in_out)
{
if (in_out->a <= 0.00000001) {
/* Black will create a divide-by-zero error. */
in_out->a = 0.0;
in_out->b = 0.0;
in_out->c = 0.0;
return;
}
double var_u = in_out->b / (13.0 * in_out->a) + ref_u;
double var_v = in_out->c / (13.0 * in_out->a) + ref_v;
double y = l2y(in_out->a);
double x = -(9.0 * y * var_u) / ((var_u - 4.0) * var_v - var_u * var_v);
double z = (9.0 * y - (15.0 * var_v * y) - (var_v * x)) / (3.0 * var_v);
in_out->a = x;
in_out->b = y;
in_out->c = z;
}
void luv2lch(Triplet* in_out)
{
double l = in_out->a;
double u = in_out->b;
double v = in_out->c;
double h;
double c = sqrt(u * u + v * v);
/* Grays: disambiguate hue */
if (c < 0.00000001) {
h = 0;
} else {
h = atan2(v, u) * 57.29577951308232087680; /* (180 / pi) */
if (h < 0.0)
h += 360.0;
}
in_out->a = l;
in_out->b = c;
in_out->c = h;
}
void lch2luv(Triplet* in_out)
{
double hrad = in_out->c * 0.01745329251994329577; /* (pi / 180.0) */
double u = cos(hrad) * in_out->b;
double v = sin(hrad) * in_out->b;
in_out->b = u;
in_out->c = v;
}
void hsluv2lch(Triplet* in_out)
{
double h = in_out->a;
double s = in_out->b;
double l = in_out->c;
double c;
/* White and black: disambiguate chroma */
if (l > 99.9999999 || l < 0.00000001) {
c = 0.0;
} else {
c = max_chroma_for_lh(l, h) / 100.0 * s;
}
/* Grays: disambiguate hue */
if (s < 0.00000001)
h = 0.0;
in_out->a = l;
in_out->b = c;
in_out->c = h;
}
void lch2hsluv(Triplet* in_out)
{
double l = in_out->a;
double c = in_out->b;
double h = in_out->c;
double s;
/* White and black: disambiguate saturation */
if (l > 99.9999999 || l < 0.00000001) {
s = 0.0;
} else {
s = c / max_chroma_for_lh(l, h) * 100.0;
}
/* Grays: disambiguate hue */
if (c < 0.00000001)
h = 0.0;
in_out->a = h;
in_out->b = s;
in_out->c = l;
}
void hsluv2rgb(double h, double s, double l, double* pr, double* pg, double* pb)
{
Triplet tmp = {h, s, l};
hsluv2lch(&tmp);
lch2luv(&tmp);
luv2xyz(&tmp);
xyz2rgb(&tmp);
*pr = tmp.a;
*pg = tmp.b;
*pb = tmp.c;
}
void rgb2hsluv(double r, double g, double b, double* ph, double* ps, double* pl)
{
Triplet tmp = {r, g, b};
rgb2xyz(&tmp);
xyz2luv(&tmp);
luv2lch(&tmp);
lch2hsluv(&tmp);
*ph = tmp.a;
*ps = tmp.b;
*pl = tmp.c;
}
} // namespace
} // namespace Phantom
// The code below is for Phantom, and is used for the Rgb/Hsl-based interface
// for color operations.
namespace Phantom
{
namespace
{
// Note: these constants might be out of range when qreal is defined as float
// instead of double.
inline qreal linear_of_srgb(qreal x)
{
return x < 0.0404482362771082 ? x / 12.92 : std::pow((x + 0.055) / 1.055, 2.4f);
}
inline qreal srgb_of_linear(qreal x)
{
return x < 0.00313066844250063 ? x * 12.92 : std::pow(x, 1.0 / 2.4) * 1.055 - 0.055;
}
} // namespace
Rgb rgb_of_qcolor(const QColor& color)
{
Rgb a;
a.r = linear_of_srgb(color.red() / 255.0);
a.g = linear_of_srgb(color.green() / 255.0);
a.b = linear_of_srgb(color.blue() / 255.0);
return a;
}
Hsl hsl_of_rgb(qreal r, qreal g, qreal b)
{
double h, s, l;
rgb2hsluv(r, g, b, &h, &s, &l);
s /= 100.0;
l /= 100.0;
return {h, s, l};
}
Rgb rgb_of_hsl(qreal h, qreal s, qreal l)
{
double r, g, b;
hsluv2rgb(h, s * 100.0, l * 100.0, &r, &g, &b);
return {r, g, b};
}
QColor qcolor_of_rgb(qreal r, qreal g, qreal b)
{
int r_ = static_cast<int>(std::lround(srgb_of_linear(r) * 255.0));
int g_ = static_cast<int>(std::lround(srgb_of_linear(g) * 255.0));
int b_ = static_cast<int>(std::lround(srgb_of_linear(b) * 255.0));
return {r_, g_, b_};
}
QColor lerpQColor(const QColor& x, const QColor& y, qreal a)
{
Rgb x_ = rgb_of_qcolor(x);
Rgb y_ = rgb_of_qcolor(y);
Rgb z = Rgb::lerp(x_, y_, a);
return qcolor_of_rgb(z.r, z.g, z.b);
}
Rgb Rgb::lerp(const Rgb& x, const Rgb& y, qreal a)
{
Rgb z;
z.r = (1.0 - a) * x.r + a * y.r;
z.g = (1.0 - a) * x.g + a * y.g;
z.b = (1.0 - a) * x.b + a * y.b;
return z;
}
} // namespace Phantom