mirror of https://github.com/cutefishos/qt-plugins
You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
424 lines
14 KiB
C++
424 lines
14 KiB
C++
/*
|
|
* HSLuv-C: Human-friendly HSL
|
|
* <http://github.com/hsluv/hsluv-c>
|
|
* <http://www.hsluv.org/>
|
|
*
|
|
* Copyright (c) 2015 Alexei Boronine (original idea, JavaScript implementation)
|
|
* Copyright (c) 2015 Roger Tallada (Obj-C implementation)
|
|
* Copyright (c) 2017 Martin Mitas (C implementation, based on Obj-C implementation)
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
|
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include "phantomcolor.h"
|
|
#include <cfloat>
|
|
#include <cmath>
|
|
|
|
namespace Phantom
|
|
{
|
|
namespace
|
|
{
|
|
|
|
// Th`ese declarations originate from hsluv.h, from the hsluv-c library. The
|
|
// hpluv functions have been removed, as they are unnecessary for Phantom.
|
|
/**
|
|
* Convert HSLuv to RGB.
|
|
*
|
|
* @param h Hue. Between 0.0 and 360.0.
|
|
* @param s Saturation. Between 0.0 and 100.0.
|
|
* @param l Lightness. Between 0.0 and 100.0.
|
|
* @param[out] pr Red component. Between 0.0 and 1.0.
|
|
* @param[out] pr Green component. Between 0.0 and 1.0.
|
|
* @param[out] pr Blue component. Between 0.0 and 1.0.
|
|
*/
|
|
void hsluv2rgb(double h, double s, double l, double* pr, double* pg, double* pb);
|
|
|
|
/**
|
|
* Convert RGB to HSLuv.
|
|
*
|
|
* @param r Red component. Between 0.0 and 1.0.
|
|
* @param g Green component. Between 0.0 and 1.0.
|
|
* @param b Blue component. Between 0.0 and 1.0.
|
|
* @param[out] ph Hue. Between 0.0 and 360.0.
|
|
* @param[out] ps Saturation. Between 0.0 and 100.0.
|
|
* @param[out] pl Lightness. Between 0.0 and 100.0.
|
|
*/
|
|
void rgb2hsluv(double r, double g, double b, double* ph, double* ps, double* pl);
|
|
|
|
// Contents below originate from hsluv.c from the hsluv-c library. They have
|
|
// been wrapped in a C++ namespace to avoid collisions and to reduce the
|
|
// translation unit count, and hsluv's own sRGB conversion code has been
|
|
// stripped out (sRGB conversion is now performed in the Phantom color code
|
|
// when going to/from the Rgb type.)
|
|
//
|
|
// If you need to update the hsluv-c code, be mindful of the removed sRGB
|
|
// conversions -- you will need to make similar modifications to the upstream
|
|
// hsluv-c code. Also note that that the hpluv (pastel) functions have been
|
|
// removed, as they are not used in Phantom.
|
|
typedef struct Triplet_tag Triplet;
|
|
struct Triplet_tag
|
|
{
|
|
double a;
|
|
double b;
|
|
double c;
|
|
};
|
|
|
|
/* for RGB */
|
|
const Triplet m[3] = {{3.24096994190452134377, -1.53738317757009345794, -0.49861076029300328366},
|
|
{-0.96924363628087982613, 1.87596750150772066772, 0.04155505740717561247},
|
|
{0.05563007969699360846, -0.20397695888897656435, 1.05697151424287856072}};
|
|
|
|
/* for XYZ */
|
|
const Triplet m_inv[3] = {{0.41239079926595948129, 0.35758433938387796373, 0.18048078840183428751},
|
|
{0.21263900587151035754, 0.71516867876775592746, 0.07219231536073371500},
|
|
{0.01933081871559185069, 0.11919477979462598791, 0.95053215224966058086}};
|
|
|
|
const double ref_u = 0.19783000664283680764;
|
|
const double ref_v = 0.46831999493879100370;
|
|
|
|
const double kappa = 903.29629629629629629630;
|
|
const double epsilon = 0.00885645167903563082;
|
|
|
|
typedef struct Bounds_tag Bounds;
|
|
struct Bounds_tag
|
|
{
|
|
double a;
|
|
double b;
|
|
};
|
|
|
|
void get_bounds(double l, Bounds bounds[6])
|
|
{
|
|
double tl = l + 16.0;
|
|
double sub1 = (tl * tl * tl) / 1560896.0;
|
|
double sub2 = (sub1 > epsilon ? sub1 : (l / kappa));
|
|
int channel;
|
|
int t;
|
|
|
|
for (channel = 0; channel < 3; channel++) {
|
|
double m1 = m[channel].a;
|
|
double m2 = m[channel].b;
|
|
double m3 = m[channel].c;
|
|
|
|
for (t = 0; t < 2; t++) {
|
|
double top1 = (284517.0 * m1 - 94839.0 * m3) * sub2;
|
|
double top2 = (838422.0 * m3 + 769860.0 * m2 + 731718.0 * m1) * l * sub2 - 769860.0 * t * l;
|
|
double bottom = (632260.0 * m3 - 126452.0 * m2) * sub2 + 126452.0 * t;
|
|
|
|
bounds[channel * 2 + t].a = top1 / bottom;
|
|
bounds[channel * 2 + t].b = top2 / bottom;
|
|
}
|
|
}
|
|
}
|
|
|
|
double ray_length_until_intersect(double theta, const Bounds* line)
|
|
{
|
|
return line->b / (sin(theta) - line->a * cos(theta));
|
|
}
|
|
|
|
double max_chroma_for_lh(double l, double h)
|
|
{
|
|
double min_len = DBL_MAX;
|
|
double hrad = h * 0.01745329251994329577; /* (2 * pi / 360) */
|
|
Bounds bounds[6];
|
|
int i;
|
|
|
|
get_bounds(l, bounds);
|
|
for (i = 0; i < 6; i++) {
|
|
double len = ray_length_until_intersect(hrad, &bounds[i]);
|
|
|
|
if (len >= 0 && len < min_len)
|
|
min_len = len;
|
|
}
|
|
return min_len;
|
|
}
|
|
|
|
double dot_product(const Triplet* t1, const Triplet* t2)
|
|
{
|
|
return (t1->a * t2->a + t1->b * t2->b + t1->c * t2->c);
|
|
}
|
|
|
|
void xyz2rgb(Triplet* in_out)
|
|
{
|
|
double r = dot_product(&m[0], in_out);
|
|
double g = dot_product(&m[1], in_out);
|
|
double b = dot_product(&m[2], in_out);
|
|
in_out->a = r;
|
|
in_out->b = g;
|
|
in_out->c = b;
|
|
}
|
|
|
|
void rgb2xyz(Triplet* in_out)
|
|
{
|
|
Triplet rgbl = {in_out->a, in_out->b, in_out->c};
|
|
double x = dot_product(&m_inv[0], &rgbl);
|
|
double y = dot_product(&m_inv[1], &rgbl);
|
|
double z = dot_product(&m_inv[2], &rgbl);
|
|
in_out->a = x;
|
|
in_out->b = y;
|
|
in_out->c = z;
|
|
}
|
|
|
|
/* http://en.wikipedia.org/wiki/CIELUV
|
|
* In these formulas, Yn refers to the reference white point. We are using
|
|
* illuminant D65, so Yn (see refY in Maxima file) equals 1. The formula is
|
|
* simplified accordingly.
|
|
*/
|
|
double y2l(double y)
|
|
{
|
|
if (y <= epsilon) {
|
|
return y * kappa;
|
|
} else {
|
|
return 116.0 * cbrt(y) - 16.0;
|
|
}
|
|
}
|
|
|
|
double l2y(double l)
|
|
{
|
|
if (l <= 8.0) {
|
|
return l / kappa;
|
|
} else {
|
|
double x = (l + 16.0) / 116.0;
|
|
return (x * x * x);
|
|
}
|
|
}
|
|
|
|
void xyz2luv(Triplet* in_out)
|
|
{
|
|
double divisor = in_out->a + (15.0 * in_out->b) + (3.0 * in_out->c);
|
|
if (divisor <= 0.00000001) {
|
|
in_out->a = 0.0;
|
|
in_out->b = 0.0;
|
|
in_out->c = 0.0;
|
|
return;
|
|
}
|
|
|
|
double var_u = (4.0 * in_out->a) / divisor;
|
|
double var_v = (9.0 * in_out->b) / divisor;
|
|
double l = y2l(in_out->b);
|
|
double u = 13.0 * l * (var_u - ref_u);
|
|
double v = 13.0 * l * (var_v - ref_v);
|
|
|
|
in_out->a = l;
|
|
if (l < 0.00000001) {
|
|
in_out->b = 0.0;
|
|
in_out->c = 0.0;
|
|
} else {
|
|
in_out->b = u;
|
|
in_out->c = v;
|
|
}
|
|
}
|
|
|
|
void luv2xyz(Triplet* in_out)
|
|
{
|
|
if (in_out->a <= 0.00000001) {
|
|
/* Black will create a divide-by-zero error. */
|
|
in_out->a = 0.0;
|
|
in_out->b = 0.0;
|
|
in_out->c = 0.0;
|
|
return;
|
|
}
|
|
|
|
double var_u = in_out->b / (13.0 * in_out->a) + ref_u;
|
|
double var_v = in_out->c / (13.0 * in_out->a) + ref_v;
|
|
double y = l2y(in_out->a);
|
|
double x = -(9.0 * y * var_u) / ((var_u - 4.0) * var_v - var_u * var_v);
|
|
double z = (9.0 * y - (15.0 * var_v * y) - (var_v * x)) / (3.0 * var_v);
|
|
in_out->a = x;
|
|
in_out->b = y;
|
|
in_out->c = z;
|
|
}
|
|
|
|
void luv2lch(Triplet* in_out)
|
|
{
|
|
double l = in_out->a;
|
|
double u = in_out->b;
|
|
double v = in_out->c;
|
|
double h;
|
|
double c = sqrt(u * u + v * v);
|
|
|
|
/* Grays: disambiguate hue */
|
|
if (c < 0.00000001) {
|
|
h = 0;
|
|
} else {
|
|
h = atan2(v, u) * 57.29577951308232087680; /* (180 / pi) */
|
|
if (h < 0.0)
|
|
h += 360.0;
|
|
}
|
|
|
|
in_out->a = l;
|
|
in_out->b = c;
|
|
in_out->c = h;
|
|
}
|
|
|
|
void lch2luv(Triplet* in_out)
|
|
{
|
|
double hrad = in_out->c * 0.01745329251994329577; /* (pi / 180.0) */
|
|
double u = cos(hrad) * in_out->b;
|
|
double v = sin(hrad) * in_out->b;
|
|
|
|
in_out->b = u;
|
|
in_out->c = v;
|
|
}
|
|
|
|
void hsluv2lch(Triplet* in_out)
|
|
{
|
|
double h = in_out->a;
|
|
double s = in_out->b;
|
|
double l = in_out->c;
|
|
double c;
|
|
|
|
/* White and black: disambiguate chroma */
|
|
if (l > 99.9999999 || l < 0.00000001) {
|
|
c = 0.0;
|
|
} else {
|
|
c = max_chroma_for_lh(l, h) / 100.0 * s;
|
|
}
|
|
|
|
/* Grays: disambiguate hue */
|
|
if (s < 0.00000001)
|
|
h = 0.0;
|
|
|
|
in_out->a = l;
|
|
in_out->b = c;
|
|
in_out->c = h;
|
|
}
|
|
|
|
void lch2hsluv(Triplet* in_out)
|
|
{
|
|
double l = in_out->a;
|
|
double c = in_out->b;
|
|
double h = in_out->c;
|
|
double s;
|
|
|
|
/* White and black: disambiguate saturation */
|
|
if (l > 99.9999999 || l < 0.00000001) {
|
|
s = 0.0;
|
|
} else {
|
|
s = c / max_chroma_for_lh(l, h) * 100.0;
|
|
}
|
|
|
|
/* Grays: disambiguate hue */
|
|
if (c < 0.00000001)
|
|
h = 0.0;
|
|
|
|
in_out->a = h;
|
|
in_out->b = s;
|
|
in_out->c = l;
|
|
}
|
|
|
|
void hsluv2rgb(double h, double s, double l, double* pr, double* pg, double* pb)
|
|
{
|
|
Triplet tmp = {h, s, l};
|
|
|
|
hsluv2lch(&tmp);
|
|
lch2luv(&tmp);
|
|
luv2xyz(&tmp);
|
|
xyz2rgb(&tmp);
|
|
|
|
*pr = tmp.a;
|
|
*pg = tmp.b;
|
|
*pb = tmp.c;
|
|
}
|
|
|
|
void rgb2hsluv(double r, double g, double b, double* ph, double* ps, double* pl)
|
|
{
|
|
Triplet tmp = {r, g, b};
|
|
|
|
rgb2xyz(&tmp);
|
|
xyz2luv(&tmp);
|
|
luv2lch(&tmp);
|
|
lch2hsluv(&tmp);
|
|
|
|
*ph = tmp.a;
|
|
*ps = tmp.b;
|
|
*pl = tmp.c;
|
|
}
|
|
|
|
} // namespace
|
|
} // namespace Phantom
|
|
|
|
// The code below is for Phantom, and is used for the Rgb/Hsl-based interface
|
|
// for color operations.
|
|
namespace Phantom
|
|
{
|
|
namespace
|
|
{
|
|
// Note: these constants might be out of range when qreal is defined as float
|
|
// instead of double.
|
|
inline qreal linear_of_srgb(qreal x)
|
|
{
|
|
return x < 0.0404482362771082 ? x / 12.92 : std::pow((x + 0.055) / 1.055, 2.4f);
|
|
}
|
|
inline qreal srgb_of_linear(qreal x)
|
|
{
|
|
return x < 0.00313066844250063 ? x * 12.92 : std::pow(x, 1.0 / 2.4) * 1.055 - 0.055;
|
|
}
|
|
} // namespace
|
|
|
|
Rgb rgb_of_qcolor(const QColor& color)
|
|
{
|
|
Rgb a;
|
|
a.r = linear_of_srgb(color.red() / 255.0);
|
|
a.g = linear_of_srgb(color.green() / 255.0);
|
|
a.b = linear_of_srgb(color.blue() / 255.0);
|
|
return a;
|
|
}
|
|
|
|
Hsl hsl_of_rgb(qreal r, qreal g, qreal b)
|
|
{
|
|
double h, s, l;
|
|
rgb2hsluv(r, g, b, &h, &s, &l);
|
|
s /= 100.0;
|
|
l /= 100.0;
|
|
return {h, s, l};
|
|
}
|
|
|
|
Rgb rgb_of_hsl(qreal h, qreal s, qreal l)
|
|
{
|
|
double r, g, b;
|
|
hsluv2rgb(h, s * 100.0, l * 100.0, &r, &g, &b);
|
|
return {r, g, b};
|
|
}
|
|
|
|
QColor qcolor_of_rgb(qreal r, qreal g, qreal b)
|
|
{
|
|
int r_ = static_cast<int>(std::lround(srgb_of_linear(r) * 255.0));
|
|
int g_ = static_cast<int>(std::lround(srgb_of_linear(g) * 255.0));
|
|
int b_ = static_cast<int>(std::lround(srgb_of_linear(b) * 255.0));
|
|
return {r_, g_, b_};
|
|
}
|
|
|
|
QColor lerpQColor(const QColor& x, const QColor& y, qreal a)
|
|
{
|
|
Rgb x_ = rgb_of_qcolor(x);
|
|
Rgb y_ = rgb_of_qcolor(y);
|
|
Rgb z = Rgb::lerp(x_, y_, a);
|
|
return qcolor_of_rgb(z.r, z.g, z.b);
|
|
}
|
|
|
|
Rgb Rgb::lerp(const Rgb& x, const Rgb& y, qreal a)
|
|
{
|
|
Rgb z;
|
|
z.r = (1.0 - a) * x.r + a * y.r;
|
|
z.g = (1.0 - a) * x.g + a * y.g;
|
|
z.b = (1.0 - a) * x.b + a * y.b;
|
|
return z;
|
|
}
|
|
} // namespace Phantom
|