/* * HSLuv-C: Human-friendly HSL * * * * Copyright (c) 2015 Alexei Boronine (original idea, JavaScript implementation) * Copyright (c) 2015 Roger Tallada (Obj-C implementation) * Copyright (c) 2017 Martin Mitas (C implementation, based on Obj-C implementation) * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "phantomcolor.h" #include #include namespace Phantom { namespace { // Th`ese declarations originate from hsluv.h, from the hsluv-c library. The // hpluv functions have been removed, as they are unnecessary for Phantom. /** * Convert HSLuv to RGB. * * @param h Hue. Between 0.0 and 360.0. * @param s Saturation. Between 0.0 and 100.0. * @param l Lightness. Between 0.0 and 100.0. * @param[out] pr Red component. Between 0.0 and 1.0. * @param[out] pr Green component. Between 0.0 and 1.0. * @param[out] pr Blue component. Between 0.0 and 1.0. */ void hsluv2rgb(double h, double s, double l, double* pr, double* pg, double* pb); /** * Convert RGB to HSLuv. * * @param r Red component. Between 0.0 and 1.0. * @param g Green component. Between 0.0 and 1.0. * @param b Blue component. Between 0.0 and 1.0. * @param[out] ph Hue. Between 0.0 and 360.0. * @param[out] ps Saturation. Between 0.0 and 100.0. * @param[out] pl Lightness. Between 0.0 and 100.0. */ void rgb2hsluv(double r, double g, double b, double* ph, double* ps, double* pl); // Contents below originate from hsluv.c from the hsluv-c library. They have // been wrapped in a C++ namespace to avoid collisions and to reduce the // translation unit count, and hsluv's own sRGB conversion code has been // stripped out (sRGB conversion is now performed in the Phantom color code // when going to/from the Rgb type.) // // If you need to update the hsluv-c code, be mindful of the removed sRGB // conversions -- you will need to make similar modifications to the upstream // hsluv-c code. Also note that that the hpluv (pastel) functions have been // removed, as they are not used in Phantom. typedef struct Triplet_tag Triplet; struct Triplet_tag { double a; double b; double c; }; /* for RGB */ const Triplet m[3] = {{3.24096994190452134377, -1.53738317757009345794, -0.49861076029300328366}, {-0.96924363628087982613, 1.87596750150772066772, 0.04155505740717561247}, {0.05563007969699360846, -0.20397695888897656435, 1.05697151424287856072}}; /* for XYZ */ const Triplet m_inv[3] = {{0.41239079926595948129, 0.35758433938387796373, 0.18048078840183428751}, {0.21263900587151035754, 0.71516867876775592746, 0.07219231536073371500}, {0.01933081871559185069, 0.11919477979462598791, 0.95053215224966058086}}; const double ref_u = 0.19783000664283680764; const double ref_v = 0.46831999493879100370; const double kappa = 903.29629629629629629630; const double epsilon = 0.00885645167903563082; typedef struct Bounds_tag Bounds; struct Bounds_tag { double a; double b; }; void get_bounds(double l, Bounds bounds[6]) { double tl = l + 16.0; double sub1 = (tl * tl * tl) / 1560896.0; double sub2 = (sub1 > epsilon ? sub1 : (l / kappa)); int channel; int t; for (channel = 0; channel < 3; channel++) { double m1 = m[channel].a; double m2 = m[channel].b; double m3 = m[channel].c; for (t = 0; t < 2; t++) { double top1 = (284517.0 * m1 - 94839.0 * m3) * sub2; double top2 = (838422.0 * m3 + 769860.0 * m2 + 731718.0 * m1) * l * sub2 - 769860.0 * t * l; double bottom = (632260.0 * m3 - 126452.0 * m2) * sub2 + 126452.0 * t; bounds[channel * 2 + t].a = top1 / bottom; bounds[channel * 2 + t].b = top2 / bottom; } } } double ray_length_until_intersect(double theta, const Bounds* line) { return line->b / (sin(theta) - line->a * cos(theta)); } double max_chroma_for_lh(double l, double h) { double min_len = DBL_MAX; double hrad = h * 0.01745329251994329577; /* (2 * pi / 360) */ Bounds bounds[6]; int i; get_bounds(l, bounds); for (i = 0; i < 6; i++) { double len = ray_length_until_intersect(hrad, &bounds[i]); if (len >= 0 && len < min_len) min_len = len; } return min_len; } double dot_product(const Triplet* t1, const Triplet* t2) { return (t1->a * t2->a + t1->b * t2->b + t1->c * t2->c); } void xyz2rgb(Triplet* in_out) { double r = dot_product(&m[0], in_out); double g = dot_product(&m[1], in_out); double b = dot_product(&m[2], in_out); in_out->a = r; in_out->b = g; in_out->c = b; } void rgb2xyz(Triplet* in_out) { Triplet rgbl = {in_out->a, in_out->b, in_out->c}; double x = dot_product(&m_inv[0], &rgbl); double y = dot_product(&m_inv[1], &rgbl); double z = dot_product(&m_inv[2], &rgbl); in_out->a = x; in_out->b = y; in_out->c = z; } /* http://en.wikipedia.org/wiki/CIELUV * In these formulas, Yn refers to the reference white point. We are using * illuminant D65, so Yn (see refY in Maxima file) equals 1. The formula is * simplified accordingly. */ double y2l(double y) { if (y <= epsilon) { return y * kappa; } else { return 116.0 * cbrt(y) - 16.0; } } double l2y(double l) { if (l <= 8.0) { return l / kappa; } else { double x = (l + 16.0) / 116.0; return (x * x * x); } } void xyz2luv(Triplet* in_out) { double divisor = in_out->a + (15.0 * in_out->b) + (3.0 * in_out->c); if (divisor <= 0.00000001) { in_out->a = 0.0; in_out->b = 0.0; in_out->c = 0.0; return; } double var_u = (4.0 * in_out->a) / divisor; double var_v = (9.0 * in_out->b) / divisor; double l = y2l(in_out->b); double u = 13.0 * l * (var_u - ref_u); double v = 13.0 * l * (var_v - ref_v); in_out->a = l; if (l < 0.00000001) { in_out->b = 0.0; in_out->c = 0.0; } else { in_out->b = u; in_out->c = v; } } void luv2xyz(Triplet* in_out) { if (in_out->a <= 0.00000001) { /* Black will create a divide-by-zero error. */ in_out->a = 0.0; in_out->b = 0.0; in_out->c = 0.0; return; } double var_u = in_out->b / (13.0 * in_out->a) + ref_u; double var_v = in_out->c / (13.0 * in_out->a) + ref_v; double y = l2y(in_out->a); double x = -(9.0 * y * var_u) / ((var_u - 4.0) * var_v - var_u * var_v); double z = (9.0 * y - (15.0 * var_v * y) - (var_v * x)) / (3.0 * var_v); in_out->a = x; in_out->b = y; in_out->c = z; } void luv2lch(Triplet* in_out) { double l = in_out->a; double u = in_out->b; double v = in_out->c; double h; double c = sqrt(u * u + v * v); /* Grays: disambiguate hue */ if (c < 0.00000001) { h = 0; } else { h = atan2(v, u) * 57.29577951308232087680; /* (180 / pi) */ if (h < 0.0) h += 360.0; } in_out->a = l; in_out->b = c; in_out->c = h; } void lch2luv(Triplet* in_out) { double hrad = in_out->c * 0.01745329251994329577; /* (pi / 180.0) */ double u = cos(hrad) * in_out->b; double v = sin(hrad) * in_out->b; in_out->b = u; in_out->c = v; } void hsluv2lch(Triplet* in_out) { double h = in_out->a; double s = in_out->b; double l = in_out->c; double c; /* White and black: disambiguate chroma */ if (l > 99.9999999 || l < 0.00000001) { c = 0.0; } else { c = max_chroma_for_lh(l, h) / 100.0 * s; } /* Grays: disambiguate hue */ if (s < 0.00000001) h = 0.0; in_out->a = l; in_out->b = c; in_out->c = h; } void lch2hsluv(Triplet* in_out) { double l = in_out->a; double c = in_out->b; double h = in_out->c; double s; /* White and black: disambiguate saturation */ if (l > 99.9999999 || l < 0.00000001) { s = 0.0; } else { s = c / max_chroma_for_lh(l, h) * 100.0; } /* Grays: disambiguate hue */ if (c < 0.00000001) h = 0.0; in_out->a = h; in_out->b = s; in_out->c = l; } void hsluv2rgb(double h, double s, double l, double* pr, double* pg, double* pb) { Triplet tmp = {h, s, l}; hsluv2lch(&tmp); lch2luv(&tmp); luv2xyz(&tmp); xyz2rgb(&tmp); *pr = tmp.a; *pg = tmp.b; *pb = tmp.c; } void rgb2hsluv(double r, double g, double b, double* ph, double* ps, double* pl) { Triplet tmp = {r, g, b}; rgb2xyz(&tmp); xyz2luv(&tmp); luv2lch(&tmp); lch2hsluv(&tmp); *ph = tmp.a; *ps = tmp.b; *pl = tmp.c; } } // namespace } // namespace Phantom // The code below is for Phantom, and is used for the Rgb/Hsl-based interface // for color operations. namespace Phantom { namespace { // Note: these constants might be out of range when qreal is defined as float // instead of double. inline qreal linear_of_srgb(qreal x) { return x < 0.0404482362771082 ? x / 12.92 : std::pow((x + 0.055) / 1.055, 2.4f); } inline qreal srgb_of_linear(qreal x) { return x < 0.00313066844250063 ? x * 12.92 : std::pow(x, 1.0 / 2.4) * 1.055 - 0.055; } } // namespace Rgb rgb_of_qcolor(const QColor& color) { Rgb a; a.r = linear_of_srgb(color.red() / 255.0); a.g = linear_of_srgb(color.green() / 255.0); a.b = linear_of_srgb(color.blue() / 255.0); return a; } Hsl hsl_of_rgb(qreal r, qreal g, qreal b) { double h, s, l; rgb2hsluv(r, g, b, &h, &s, &l); s /= 100.0; l /= 100.0; return {h, s, l}; } Rgb rgb_of_hsl(qreal h, qreal s, qreal l) { double r, g, b; hsluv2rgb(h, s * 100.0, l * 100.0, &r, &g, &b); return {r, g, b}; } QColor qcolor_of_rgb(qreal r, qreal g, qreal b) { int r_ = static_cast(std::lround(srgb_of_linear(r) * 255.0)); int g_ = static_cast(std::lround(srgb_of_linear(g) * 255.0)); int b_ = static_cast(std::lround(srgb_of_linear(b) * 255.0)); return {r_, g_, b_}; } QColor lerpQColor(const QColor& x, const QColor& y, qreal a) { Rgb x_ = rgb_of_qcolor(x); Rgb y_ = rgb_of_qcolor(y); Rgb z = Rgb::lerp(x_, y_, a); return qcolor_of_rgb(z.r, z.g, z.b); } Rgb Rgb::lerp(const Rgb& x, const Rgb& y, qreal a) { Rgb z; z.r = (1.0 - a) * x.r + a * y.r; z.g = (1.0 - a) * x.g + a * y.g; z.b = (1.0 - a) * x.b + a * y.b; return z; } } // namespace Phantom