mirror of https://github.com/XingangPan/DragGAN
				
				
				
			
			You cannot select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
	
	
		
			97 lines
		
	
	
		
			4.3 KiB
		
	
	
	
		
			Markdown
		
	
			
		
		
	
	
			97 lines
		
	
	
		
			4.3 KiB
		
	
	
	
		
			Markdown
		
	
<p align="center">
 | 
						|
 | 
						|
  <h1 align="center">Drag Your GAN: Interactive Point-based Manipulation on the Generative Image Manifold</h1>
 | 
						|
  <p align="center">
 | 
						|
    <a href="https://xingangpan.github.io/"><strong>Xingang Pan</strong></a>
 | 
						|
    ·
 | 
						|
    <a href="https://ayushtewari.com/"><strong>Ayush Tewari</strong></a>
 | 
						|
    ·
 | 
						|
    <a href="https://people.mpi-inf.mpg.de/~tleimkue/"><strong>Thomas Leimkühler</strong></a>
 | 
						|
    ·
 | 
						|
    <a href="https://lingjie0206.github.io/"><strong>Lingjie Liu</strong></a>
 | 
						|
    ·
 | 
						|
    <a href="https://www.meka.page/"><strong>Abhimitra Meka</strong></a>
 | 
						|
    ·
 | 
						|
    <a href="http://www.mpi-inf.mpg.de/~theobalt/"><strong>Christian Theobalt</strong></a>
 | 
						|
  </p>
 | 
						|
  <h2 align="center">SIGGRAPH 2023 Conference Proceedings</h2>
 | 
						|
  <div align="center">
 | 
						|
    <img src="DragGAN.gif", width="600">
 | 
						|
  </div>
 | 
						|
 | 
						|
  <p align="center">
 | 
						|
  <br>
 | 
						|
    <a href="https://pytorch.org/get-started/locally/"><img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-ee4c2c?logo=pytorch&logoColor=white"></a>
 | 
						|
    <a href="https://twitter.com/XingangP"><img alt='Twitter' src="https://img.shields.io/twitter/follow/XingangP?label=%40XingangP"></a>
 | 
						|
    <a href="https://arxiv.org/abs/2305.10973">
 | 
						|
      <img src='https://img.shields.io/badge/Paper-PDF-green?style=for-the-badge&logo=adobeacrobatreader&logoWidth=20&logoColor=white&labelColor=66cc00&color=94DD15' alt='Paper PDF'>
 | 
						|
    </a>
 | 
						|
    <a href='https://vcai.mpi-inf.mpg.de/projects/DragGAN/'>
 | 
						|
      <img src='https://img.shields.io/badge/DragGAN-Page-orange?style=for-the-badge&logo=Google%20chrome&logoColor=white&labelColor=D35400' alt='Project Page'></a>
 | 
						|
    <a href="https://huggingface.co/spaces/radames/DragGan"><img alt="Huggingface" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-DragGAN-orange"></a>
 | 
						|
    <a href="https://colab.research.google.com/drive/1mey-IXPwQC_qSthI5hO-LTX7QL4ivtPh?usp=sharing"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
 | 
						|
  </p>
 | 
						|
</p>
 | 
						|
 | 
						|
## Requirements
 | 
						|
 | 
						|
If you have CUDA graphic card, please follow the requirements of [https://github.com/NVlabs/stylegan3](https://github.com/NVlabs/stylegan3).
 | 
						|
 | 
						|
Otherwise (for GPU acceleration on MacOS with Silicon Mac M1/M2, or just CPU) try the following:
 | 
						|
 | 
						|
```sh
 | 
						|
cat environment.yml | \
 | 
						|
  grep -v -E 'nvidia|cuda' > environment-no-nvidia.yml && \
 | 
						|
    conda env create -f environment-no-nvidia.yml
 | 
						|
conda activate stylegan3
 | 
						|
 | 
						|
# On MacOS
 | 
						|
export PYTORCH_ENABLE_MPS_FALLBACK=1
 | 
						|
```
 | 
						|
 | 
						|
## Download pre-trained StyleGAN2 weights
 | 
						|
 | 
						|
To download pre-trained weights, simply run:
 | 
						|
```sh
 | 
						|
sh scripts/download_model.sh
 | 
						|
```
 | 
						|
If you want to try StyleGAN-Human and the Landscapes HQ (LHQ) dataset, please download weights from these links: [StyleGAN-Human](https://drive.google.com/file/d/1dlFEHbu-WzQWJl7nBBZYcTyo000H9hVm/view?usp=sharing), [LHQ](https://drive.google.com/file/d/16twEf0T9QINAEoMsWefoWiyhcTd-aiWc/view?usp=sharing), and put them under `./checkpoints`.
 | 
						|
 | 
						|
Feel free to try other pretrained StyleGAN.
 | 
						|
 | 
						|
## Run DragGAN GUI
 | 
						|
 | 
						|
To start the DragGAN GUI, simply run:
 | 
						|
```sh
 | 
						|
sh scripts/gui.sh
 | 
						|
```
 | 
						|
 | 
						|
This GUI supports editing GAN-generated images. To edit a real image, you need to first perform GAN inversion using tools like [PTI](https://github.com/danielroich/PTI). Then load the new latent code and model weights to the GUI.
 | 
						|
 | 
						|
You can run DragGAN Gradio demo as well:
 | 
						|
```sh
 | 
						|
python visualizer_drag_gradio.py
 | 
						|
```
 | 
						|
 | 
						|
## Acknowledgement
 | 
						|
 | 
						|
This code is developed based on [StyleGAN3](https://github.com/NVlabs/stylegan3). Part of the code is borrowed from [StyleGAN-Human](https://github.com/stylegan-human/StyleGAN-Human).
 | 
						|
 | 
						|
## License
 | 
						|
 | 
						|
The code related to the DragGAN algorithm is licensed under [CC-BY-NC](https://creativecommons.org/licenses/by-nc/4.0/).
 | 
						|
However, most of this project are available under a separate license terms: all codes used or modified from [StyleGAN3](https://github.com/NVlabs/stylegan3) is under the [Nvidia Source Code License](https://github.com/NVlabs/stylegan3/blob/main/LICENSE.txt).
 | 
						|
 | 
						|
Any form of use and derivative of this code must preserve the watermarking functionality showing "AI Generated".
 | 
						|
 | 
						|
## BibTeX
 | 
						|
 | 
						|
```bibtex
 | 
						|
@inproceedings{pan2023draggan,
 | 
						|
    title={Drag Your GAN: Interactive Point-based Manipulation on the Generative Image Manifold},
 | 
						|
    author={Pan, Xingang and Tewari, Ayush, and Leimk{\"u}hler, Thomas and Liu, Lingjie and Meka, Abhimitra and Theobalt, Christian},
 | 
						|
    booktitle = {ACM SIGGRAPH 2023 Conference Proceedings},
 | 
						|
    year={2023}
 | 
						|
}
 | 
						|
```
 |