|
|
|
@ -167,10 +167,22 @@ void ProcessTriangle(const VertexShader::OutputVertex& v0,
|
|
|
|
|
(u8)(GetInterpolatedAttribute(v0.color.a(), v1.color.a(), v2.color.a()).ToFloat32() * 255)
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
Math::Vec4<u8> texture_color{};
|
|
|
|
|
float24 u = GetInterpolatedAttribute(v0.tc0.u(), v1.tc0.u(), v2.tc0.u());
|
|
|
|
|
float24 v = GetInterpolatedAttribute(v0.tc0.v(), v1.tc0.v(), v2.tc0.v());
|
|
|
|
|
if (registers.texturing_enable) {
|
|
|
|
|
Math::Vec2<float24> uv[3];
|
|
|
|
|
uv[0].u() = GetInterpolatedAttribute(v0.tc0.u(), v1.tc0.u(), v2.tc0.u());
|
|
|
|
|
uv[0].v() = GetInterpolatedAttribute(v0.tc0.v(), v1.tc0.v(), v2.tc0.v());
|
|
|
|
|
uv[1].u() = GetInterpolatedAttribute(v0.tc1.u(), v1.tc1.u(), v2.tc1.u());
|
|
|
|
|
uv[1].v() = GetInterpolatedAttribute(v0.tc1.v(), v1.tc1.v(), v2.tc1.v());
|
|
|
|
|
uv[2].u() = GetInterpolatedAttribute(v0.tc2.u(), v1.tc2.u(), v2.tc2.u());
|
|
|
|
|
uv[2].v() = GetInterpolatedAttribute(v0.tc2.v(), v1.tc2.v(), v2.tc2.v());
|
|
|
|
|
|
|
|
|
|
Math::Vec4<u8> texture_color[3]{};
|
|
|
|
|
for (int i = 0; i < 3; ++i) {
|
|
|
|
|
auto texture = registers.GetTextures()[i];
|
|
|
|
|
if (!texture.enabled)
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
_dbg_assert_(GPU, 0 != texture.config.address);
|
|
|
|
|
|
|
|
|
|
// Images are split into 8x8 tiles. Each tile is composed of four 4x4 subtiles each
|
|
|
|
|
// of which is composed of four 2x2 subtiles each of which is composed of four texels.
|
|
|
|
|
// Each structure is embedded into the next-bigger one in a diagonal pattern, e.g.
|
|
|
|
@ -189,14 +201,11 @@ void ProcessTriangle(const VertexShader::OutputVertex& v0,
|
|
|
|
|
// 02 03 06 07 18 19 22 23
|
|
|
|
|
// 00 01 04 05 16 17 20 21
|
|
|
|
|
|
|
|
|
|
// TODO: This is currently hardcoded for RGB8
|
|
|
|
|
u32* texture_data = (u32*)Memory::GetPointer(registers.texture0.GetPhysicalAddress());
|
|
|
|
|
|
|
|
|
|
// TODO(neobrain): Not sure if this swizzling pattern is used for all textures.
|
|
|
|
|
// To be flexible in case different but similar patterns are used, we keep this
|
|
|
|
|
// somewhat inefficient code around for now.
|
|
|
|
|
int s = (int)(u * float24::FromFloat32(static_cast<float>(registers.texture0.width))).ToFloat32();
|
|
|
|
|
int t = (int)(v * float24::FromFloat32(static_cast<float>(registers.texture0.height))).ToFloat32();
|
|
|
|
|
int s = (int)(uv[i].u() * float24::FromFloat32(static_cast<float>(texture.config.width))).ToFloat32();
|
|
|
|
|
int t = (int)(uv[i].v() * float24::FromFloat32(static_cast<float>(texture.config.height))).ToFloat32();
|
|
|
|
|
int texel_index_within_tile = 0;
|
|
|
|
|
for (int block_size_index = 0; block_size_index < 3; ++block_size_index) {
|
|
|
|
|
int sub_tile_width = 1 << block_size_index;
|
|
|
|
@ -213,14 +222,17 @@ void ProcessTriangle(const VertexShader::OutputVertex& v0,
|
|
|
|
|
int coarse_s = (s / block_width) * block_width;
|
|
|
|
|
int coarse_t = (t / block_height) * block_height;
|
|
|
|
|
|
|
|
|
|
const int row_stride = registers.texture0.width * 3;
|
|
|
|
|
// TODO: This is currently hardcoded for RGB8
|
|
|
|
|
u32* texture_data = (u32*)Memory::GetPointer(texture.config.GetPhysicalAddress());
|
|
|
|
|
|
|
|
|
|
const int row_stride = texture.config.width * 3;
|
|
|
|
|
u8* source_ptr = (u8*)texture_data + coarse_s * block_height * 3 + coarse_t * row_stride + texel_index_within_tile * 3;
|
|
|
|
|
texture_color.r() = source_ptr[2];
|
|
|
|
|
texture_color.g() = source_ptr[1];
|
|
|
|
|
texture_color.b() = source_ptr[0];
|
|
|
|
|
texture_color.a() = 0xFF;
|
|
|
|
|
texture_color[i].r() = source_ptr[2];
|
|
|
|
|
texture_color[i].g() = source_ptr[1];
|
|
|
|
|
texture_color[i].b() = source_ptr[0];
|
|
|
|
|
texture_color[i].a() = 0xFF;
|
|
|
|
|
|
|
|
|
|
DebugUtils::DumpTexture(registers.texture0, (u8*)texture_data);
|
|
|
|
|
DebugUtils::DumpTexture(texture.config, (u8*)texture_data);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Texture environment - consists of 6 stages of color and alpha combining.
|
|
|
|
@ -243,7 +255,13 @@ void ProcessTriangle(const VertexShader::OutputVertex& v0,
|
|
|
|
|
return primary_color.rgb();
|
|
|
|
|
|
|
|
|
|
case Source::Texture0:
|
|
|
|
|
return texture_color.rgb();
|
|
|
|
|
return texture_color[0].rgb();
|
|
|
|
|
|
|
|
|
|
case Source::Texture1:
|
|
|
|
|
return texture_color[1].rgb();
|
|
|
|
|
|
|
|
|
|
case Source::Texture2:
|
|
|
|
|
return texture_color[2].rgb();
|
|
|
|
|
|
|
|
|
|
case Source::Constant:
|
|
|
|
|
return {tev_stage.const_r, tev_stage.const_g, tev_stage.const_b};
|
|
|
|
@ -263,7 +281,13 @@ void ProcessTriangle(const VertexShader::OutputVertex& v0,
|
|
|
|
|
return primary_color.a();
|
|
|
|
|
|
|
|
|
|
case Source::Texture0:
|
|
|
|
|
return texture_color.a();
|
|
|
|
|
return texture_color[0].a();
|
|
|
|
|
|
|
|
|
|
case Source::Texture1:
|
|
|
|
|
return texture_color[1].a();
|
|
|
|
|
|
|
|
|
|
case Source::Texture2:
|
|
|
|
|
return texture_color[2].a();
|
|
|
|
|
|
|
|
|
|
case Source::Constant:
|
|
|
|
|
return tev_stage.const_a;
|
|
|
|
|