Merge pull request #3353 from FernandoS27/aries

System: Refactor CPU Core management and move ARMInterface and Schedulers to Kernel
pull/8/head
bunnei 5 years ago committed by GitHub
commit 985d0f35e5
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -15,14 +15,14 @@ add_library(core STATIC
constants.h
core.cpp
core.h
core_cpu.cpp
core_cpu.h
core_manager.cpp
core_manager.h
core_timing.cpp
core_timing.h
core_timing_util.cpp
core_timing_util.h
cpu_core_manager.cpp
cpu_core_manager.h
cpu_manager.cpp
cpu_manager.h
crypto/aes_util.cpp
crypto/aes_util.h
crypto/encryption_layer.cpp
@ -158,6 +158,8 @@ add_library(core STATIC
hle/kernel/mutex.h
hle/kernel/object.cpp
hle/kernel/object.h
hle/kernel/physical_core.cpp
hle/kernel/physical_core.h
hle/kernel/process.cpp
hle/kernel/process.h
hle/kernel/process_capability.cpp

@ -10,7 +10,7 @@
#include "common/microprofile.h"
#include "core/arm/dynarmic/arm_dynarmic.h"
#include "core/core.h"
#include "core/core_cpu.h"
#include "core/core_manager.h"
#include "core/core_timing.h"
#include "core/core_timing_util.h"
#include "core/gdbstub/gdbstub.h"

@ -2,10 +2,24 @@
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#ifdef ARCHITECTURE_x86_64
#include "core/arm/dynarmic/arm_dynarmic.h"
#endif
#include "core/arm/exclusive_monitor.h"
#include "core/memory.h"
namespace Core {
ExclusiveMonitor::~ExclusiveMonitor() = default;
std::unique_ptr<Core::ExclusiveMonitor> MakeExclusiveMonitor(Memory::Memory& memory,
std::size_t num_cores) {
#ifdef ARCHITECTURE_x86_64
return std::make_unique<Core::DynarmicExclusiveMonitor>(memory, num_cores);
#else
// TODO(merry): Passthrough exclusive monitor
return nullptr;
#endif
}
} // namespace Core

@ -4,8 +4,14 @@
#pragma once
#include <memory>
#include "common/common_types.h"
namespace Memory {
class Memory;
}
namespace Core {
class ExclusiveMonitor {
@ -22,4 +28,7 @@ public:
virtual bool ExclusiveWrite128(std::size_t core_index, VAddr vaddr, u128 value) = 0;
};
std::unique_ptr<Core::ExclusiveMonitor> MakeExclusiveMonitor(Memory::Memory& memory,
std::size_t num_cores);
} // namespace Core

@ -11,9 +11,9 @@
#include "common/string_util.h"
#include "core/arm/exclusive_monitor.h"
#include "core/core.h"
#include "core/core_cpu.h"
#include "core/core_manager.h"
#include "core/core_timing.h"
#include "core/cpu_core_manager.h"
#include "core/cpu_manager.h"
#include "core/file_sys/bis_factory.h"
#include "core/file_sys/card_image.h"
#include "core/file_sys/mode.h"
@ -28,6 +28,7 @@
#include "core/hardware_interrupt_manager.h"
#include "core/hle/kernel/client_port.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/physical_core.h"
#include "core/hle/kernel/process.h"
#include "core/hle/kernel/scheduler.h"
#include "core/hle/kernel/thread.h"
@ -113,16 +114,25 @@ FileSys::VirtualFile GetGameFileFromPath(const FileSys::VirtualFilesystem& vfs,
struct System::Impl {
explicit Impl(System& system)
: kernel{system}, fs_controller{system}, memory{system},
cpu_core_manager{system}, reporter{system}, applet_manager{system} {}
cpu_manager{system}, reporter{system}, applet_manager{system} {}
Cpu& CurrentCpuCore() {
return cpu_core_manager.GetCurrentCore();
CoreManager& CurrentCoreManager() {
return cpu_manager.GetCurrentCoreManager();
}
Kernel::PhysicalCore& CurrentPhysicalCore() {
const auto index = cpu_manager.GetActiveCoreIndex();
return kernel.PhysicalCore(index);
}
Kernel::PhysicalCore& GetPhysicalCore(std::size_t index) {
return kernel.PhysicalCore(index);
}
ResultStatus RunLoop(bool tight_loop) {
status = ResultStatus::Success;
cpu_core_manager.RunLoop(tight_loop);
cpu_manager.RunLoop(tight_loop);
return status;
}
@ -131,8 +141,8 @@ struct System::Impl {
LOG_DEBUG(HW_Memory, "initialized OK");
core_timing.Initialize();
cpu_core_manager.Initialize();
kernel.Initialize();
cpu_manager.Initialize();
const auto current_time = std::chrono::duration_cast<std::chrono::seconds>(
std::chrono::system_clock::now().time_since_epoch());
@ -205,7 +215,6 @@ struct System::Impl {
// Main process has been loaded and been made current.
// Begin GPU and CPU execution.
gpu_core->Start();
cpu_core_manager.StartThreads();
// Initialize cheat engine
if (cheat_engine) {
@ -272,7 +281,7 @@ struct System::Impl {
gpu_core.reset();
// Close all CPU/threading state
cpu_core_manager.Shutdown();
cpu_manager.Shutdown();
// Shutdown kernel and core timing
kernel.Shutdown();
@ -342,7 +351,7 @@ struct System::Impl {
std::unique_ptr<Tegra::GPU> gpu_core;
std::unique_ptr<Hardware::InterruptManager> interrupt_manager;
Memory::Memory memory;
CpuCoreManager cpu_core_manager;
CpuManager cpu_manager;
bool is_powered_on = false;
bool exit_lock = false;
@ -377,12 +386,12 @@ struct System::Impl {
System::System() : impl{std::make_unique<Impl>(*this)} {}
System::~System() = default;
Cpu& System::CurrentCpuCore() {
return impl->CurrentCpuCore();
CoreManager& System::CurrentCoreManager() {
return impl->CurrentCoreManager();
}
const Cpu& System::CurrentCpuCore() const {
return impl->CurrentCpuCore();
const CoreManager& System::CurrentCoreManager() const {
return impl->CurrentCoreManager();
}
System::ResultStatus System::RunLoop(bool tight_loop) {
@ -394,7 +403,7 @@ System::ResultStatus System::SingleStep() {
}
void System::InvalidateCpuInstructionCaches() {
impl->cpu_core_manager.InvalidateAllInstructionCaches();
impl->kernel.InvalidateAllInstructionCaches();
}
System::ResultStatus System::Load(Frontend::EmuWindow& emu_window, const std::string& filepath) {
@ -406,13 +415,11 @@ bool System::IsPoweredOn() const {
}
void System::PrepareReschedule() {
CurrentCpuCore().PrepareReschedule();
impl->CurrentPhysicalCore().Stop();
}
void System::PrepareReschedule(const u32 core_index) {
if (core_index < GlobalScheduler().CpuCoresCount()) {
CpuCore(core_index).PrepareReschedule();
}
impl->kernel.PrepareReschedule(core_index);
}
PerfStatsResults System::GetAndResetPerfStats() {
@ -428,31 +435,31 @@ const TelemetrySession& System::TelemetrySession() const {
}
ARM_Interface& System::CurrentArmInterface() {
return CurrentCpuCore().ArmInterface();
return impl->CurrentPhysicalCore().ArmInterface();
}
const ARM_Interface& System::CurrentArmInterface() const {
return CurrentCpuCore().ArmInterface();
return impl->CurrentPhysicalCore().ArmInterface();
}
std::size_t System::CurrentCoreIndex() const {
return CurrentCpuCore().CoreIndex();
return impl->cpu_manager.GetActiveCoreIndex();
}
Kernel::Scheduler& System::CurrentScheduler() {
return CurrentCpuCore().Scheduler();
return impl->CurrentPhysicalCore().Scheduler();
}
const Kernel::Scheduler& System::CurrentScheduler() const {
return CurrentCpuCore().Scheduler();
return impl->CurrentPhysicalCore().Scheduler();
}
Kernel::Scheduler& System::Scheduler(std::size_t core_index) {
return CpuCore(core_index).Scheduler();
return impl->GetPhysicalCore(core_index).Scheduler();
}
const Kernel::Scheduler& System::Scheduler(std::size_t core_index) const {
return CpuCore(core_index).Scheduler();
return impl->GetPhysicalCore(core_index).Scheduler();
}
/// Gets the global scheduler
@ -474,28 +481,28 @@ const Kernel::Process* System::CurrentProcess() const {
}
ARM_Interface& System::ArmInterface(std::size_t core_index) {
return CpuCore(core_index).ArmInterface();
return impl->GetPhysicalCore(core_index).ArmInterface();
}
const ARM_Interface& System::ArmInterface(std::size_t core_index) const {
return CpuCore(core_index).ArmInterface();
return impl->GetPhysicalCore(core_index).ArmInterface();
}
Cpu& System::CpuCore(std::size_t core_index) {
return impl->cpu_core_manager.GetCore(core_index);
CoreManager& System::GetCoreManager(std::size_t core_index) {
return impl->cpu_manager.GetCoreManager(core_index);
}
const Cpu& System::CpuCore(std::size_t core_index) const {
const CoreManager& System::GetCoreManager(std::size_t core_index) const {
ASSERT(core_index < NUM_CPU_CORES);
return impl->cpu_core_manager.GetCore(core_index);
return impl->cpu_manager.GetCoreManager(core_index);
}
ExclusiveMonitor& System::Monitor() {
return impl->cpu_core_manager.GetExclusiveMonitor();
return impl->kernel.GetExclusiveMonitor();
}
const ExclusiveMonitor& System::Monitor() const {
return impl->cpu_core_manager.GetExclusiveMonitor();
return impl->kernel.GetExclusiveMonitor();
}
Memory::Memory& System::Memory() {

@ -93,7 +93,7 @@ class Memory;
namespace Core {
class ARM_Interface;
class Cpu;
class CoreManager;
class ExclusiveMonitor;
class FrameLimiter;
class PerfStats;
@ -218,10 +218,10 @@ public:
const ARM_Interface& ArmInterface(std::size_t core_index) const;
/// Gets a CPU interface to the CPU core with the specified index
Cpu& CpuCore(std::size_t core_index);
CoreManager& GetCoreManager(std::size_t core_index);
/// Gets a CPU interface to the CPU core with the specified index
const Cpu& CpuCore(std::size_t core_index) const;
const CoreManager& GetCoreManager(std::size_t core_index) const;
/// Gets a reference to the exclusive monitor
ExclusiveMonitor& Monitor();
@ -364,10 +364,10 @@ private:
System();
/// Returns the currently running CPU core
Cpu& CurrentCpuCore();
CoreManager& CurrentCoreManager();
/// Returns the currently running CPU core
const Cpu& CurrentCpuCore() const;
const CoreManager& CurrentCoreManager() const;
/**
* Initialize the emulated system.

@ -1,127 +0,0 @@
// Copyright 2018 yuzu emulator team
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <condition_variable>
#include <mutex>
#include "common/logging/log.h"
#ifdef ARCHITECTURE_x86_64
#include "core/arm/dynarmic/arm_dynarmic.h"
#endif
#include "core/arm/exclusive_monitor.h"
#include "core/arm/unicorn/arm_unicorn.h"
#include "core/core.h"
#include "core/core_cpu.h"
#include "core/core_timing.h"
#include "core/hle/kernel/scheduler.h"
#include "core/hle/kernel/thread.h"
#include "core/hle/lock.h"
#include "core/settings.h"
namespace Core {
void CpuBarrier::NotifyEnd() {
std::unique_lock lock{mutex};
end = true;
condition.notify_all();
}
bool CpuBarrier::Rendezvous() {
if (!Settings::values.use_multi_core) {
// Meaningless when running in single-core mode
return true;
}
if (!end) {
std::unique_lock lock{mutex};
--cores_waiting;
if (!cores_waiting) {
cores_waiting = NUM_CPU_CORES;
condition.notify_all();
return true;
}
condition.wait(lock);
return true;
}
return false;
}
Cpu::Cpu(System& system, ExclusiveMonitor& exclusive_monitor, CpuBarrier& cpu_barrier,
std::size_t core_index)
: cpu_barrier{cpu_barrier}, global_scheduler{system.GlobalScheduler()},
core_timing{system.CoreTiming()}, core_index{core_index} {
#ifdef ARCHITECTURE_x86_64
arm_interface = std::make_unique<ARM_Dynarmic>(system, exclusive_monitor, core_index);
#else
arm_interface = std::make_unique<ARM_Unicorn>(system);
LOG_WARNING(Core, "CPU JIT requested, but Dynarmic not available");
#endif
scheduler = std::make_unique<Kernel::Scheduler>(system, *arm_interface, core_index);
}
Cpu::~Cpu() = default;
std::unique_ptr<ExclusiveMonitor> Cpu::MakeExclusiveMonitor(
[[maybe_unused]] Memory::Memory& memory, [[maybe_unused]] std::size_t num_cores) {
#ifdef ARCHITECTURE_x86_64
return std::make_unique<DynarmicExclusiveMonitor>(memory, num_cores);
#else
// TODO(merry): Passthrough exclusive monitor
return nullptr;
#endif
}
void Cpu::RunLoop(bool tight_loop) {
// Wait for all other CPU cores to complete the previous slice, such that they run in lock-step
if (!cpu_barrier.Rendezvous()) {
// If rendezvous failed, session has been killed
return;
}
Reschedule();
// If we don't have a currently active thread then don't execute instructions,
// instead advance to the next event and try to yield to the next thread
if (Kernel::GetCurrentThread() == nullptr) {
LOG_TRACE(Core, "Core-{} idling", core_index);
core_timing.Idle();
} else {
if (tight_loop) {
arm_interface->Run();
} else {
arm_interface->Step();
}
// We are stopping a run, exclusive state must be cleared
arm_interface->ClearExclusiveState();
}
core_timing.Advance();
Reschedule();
}
void Cpu::SingleStep() {
return RunLoop(false);
}
void Cpu::PrepareReschedule() {
arm_interface->PrepareReschedule();
}
void Cpu::Reschedule() {
// Lock the global kernel mutex when we manipulate the HLE state
std::lock_guard lock(HLE::g_hle_lock);
global_scheduler.SelectThread(core_index);
scheduler->TryDoContextSwitch();
}
void Cpu::Shutdown() {
scheduler->Shutdown();
}
} // namespace Core

@ -1,120 +0,0 @@
// Copyright 2018 yuzu emulator team
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <atomic>
#include <condition_variable>
#include <cstddef>
#include <memory>
#include <mutex>
#include "common/common_types.h"
namespace Kernel {
class GlobalScheduler;
class Scheduler;
} // namespace Kernel
namespace Core {
class System;
}
namespace Core::Timing {
class CoreTiming;
}
namespace Memory {
class Memory;
}
namespace Core {
class ARM_Interface;
class ExclusiveMonitor;
constexpr unsigned NUM_CPU_CORES{4};
class CpuBarrier {
public:
bool IsAlive() const {
return !end;
}
void NotifyEnd();
bool Rendezvous();
private:
unsigned cores_waiting{NUM_CPU_CORES};
std::mutex mutex;
std::condition_variable condition;
std::atomic<bool> end{};
};
class Cpu {
public:
Cpu(System& system, ExclusiveMonitor& exclusive_monitor, CpuBarrier& cpu_barrier,
std::size_t core_index);
~Cpu();
void RunLoop(bool tight_loop = true);
void SingleStep();
void PrepareReschedule();
ARM_Interface& ArmInterface() {
return *arm_interface;
}
const ARM_Interface& ArmInterface() const {
return *arm_interface;
}
Kernel::Scheduler& Scheduler() {
return *scheduler;
}
const Kernel::Scheduler& Scheduler() const {
return *scheduler;
}
bool IsMainCore() const {
return core_index == 0;
}
std::size_t CoreIndex() const {
return core_index;
}
void Shutdown();
/**
* Creates an exclusive monitor to handle exclusive reads/writes.
*
* @param memory The current memory subsystem that the monitor may wish
* to keep track of.
*
* @param num_cores The number of cores to assume about the CPU.
*
* @returns The constructed exclusive monitor instance, or nullptr if the current
* CPU backend is unable to use an exclusive monitor.
*/
static std::unique_ptr<ExclusiveMonitor> MakeExclusiveMonitor(Memory::Memory& memory,
std::size_t num_cores);
private:
void Reschedule();
std::unique_ptr<ARM_Interface> arm_interface;
CpuBarrier& cpu_barrier;
Kernel::GlobalScheduler& global_scheduler;
std::unique_ptr<Kernel::Scheduler> scheduler;
Timing::CoreTiming& core_timing;
std::atomic<bool> reschedule_pending = false;
std::size_t core_index;
};
} // namespace Core

@ -0,0 +1,70 @@
// Copyright 2018 yuzu emulator team
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <condition_variable>
#include <mutex>
#include "common/logging/log.h"
#ifdef ARCHITECTURE_x86_64
#include "core/arm/dynarmic/arm_dynarmic.h"
#endif
#include "core/arm/exclusive_monitor.h"
#include "core/arm/unicorn/arm_unicorn.h"
#include "core/core.h"
#include "core/core_manager.h"
#include "core/core_timing.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/physical_core.h"
#include "core/hle/kernel/scheduler.h"
#include "core/hle/kernel/thread.h"
#include "core/hle/lock.h"
#include "core/settings.h"
namespace Core {
CoreManager::CoreManager(System& system, std::size_t core_index)
: global_scheduler{system.GlobalScheduler()}, physical_core{system.Kernel().PhysicalCore(
core_index)},
core_timing{system.CoreTiming()}, core_index{core_index} {}
CoreManager::~CoreManager() = default;
void CoreManager::RunLoop(bool tight_loop) {
Reschedule();
// If we don't have a currently active thread then don't execute instructions,
// instead advance to the next event and try to yield to the next thread
if (Kernel::GetCurrentThread() == nullptr) {
LOG_TRACE(Core, "Core-{} idling", core_index);
core_timing.Idle();
} else {
if (tight_loop) {
physical_core.Run();
} else {
physical_core.Step();
}
}
core_timing.Advance();
Reschedule();
}
void CoreManager::SingleStep() {
return RunLoop(false);
}
void CoreManager::PrepareReschedule() {
physical_core.Stop();
}
void CoreManager::Reschedule() {
// Lock the global kernel mutex when we manipulate the HLE state
std::lock_guard lock(HLE::g_hle_lock);
global_scheduler.SelectThread(core_index);
physical_core.Scheduler().TryDoContextSwitch();
}
} // namespace Core

@ -0,0 +1,63 @@
// Copyright 2018 yuzu emulator team
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <atomic>
#include <cstddef>
#include <memory>
#include "common/common_types.h"
namespace Kernel {
class GlobalScheduler;
class PhysicalCore;
} // namespace Kernel
namespace Core {
class System;
}
namespace Core::Timing {
class CoreTiming;
}
namespace Memory {
class Memory;
}
namespace Core {
constexpr unsigned NUM_CPU_CORES{4};
class CoreManager {
public:
CoreManager(System& system, std::size_t core_index);
~CoreManager();
void RunLoop(bool tight_loop = true);
void SingleStep();
void PrepareReschedule();
bool IsMainCore() const {
return core_index == 0;
}
std::size_t CoreIndex() const {
return core_index;
}
private:
void Reschedule();
Kernel::GlobalScheduler& global_scheduler;
Kernel::PhysicalCore& physical_core;
Timing::CoreTiming& core_timing;
std::atomic<bool> reschedule_pending = false;
std::size_t core_index;
};
} // namespace Core

@ -1,152 +0,0 @@
// Copyright 2018 yuzu emulator team
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include "common/assert.h"
#include "core/arm/exclusive_monitor.h"
#include "core/core.h"
#include "core/core_cpu.h"
#include "core/core_timing.h"
#include "core/cpu_core_manager.h"
#include "core/gdbstub/gdbstub.h"
#include "core/settings.h"
namespace Core {
namespace {
void RunCpuCore(const System& system, Cpu& cpu_state) {
while (system.IsPoweredOn()) {
cpu_state.RunLoop(true);
}
}
} // Anonymous namespace
CpuCoreManager::CpuCoreManager(System& system) : system{system} {}
CpuCoreManager::~CpuCoreManager() = default;
void CpuCoreManager::Initialize() {
barrier = std::make_unique<CpuBarrier>();
exclusive_monitor = Cpu::MakeExclusiveMonitor(system.Memory(), cores.size());
for (std::size_t index = 0; index < cores.size(); ++index) {
cores[index] = std::make_unique<Cpu>(system, *exclusive_monitor, *barrier, index);
}
}
void CpuCoreManager::StartThreads() {
// Create threads for CPU cores 1-3, and build thread_to_cpu map
// CPU core 0 is run on the main thread
thread_to_cpu[std::this_thread::get_id()] = cores[0].get();
if (!Settings::values.use_multi_core) {
return;
}
for (std::size_t index = 0; index < core_threads.size(); ++index) {
core_threads[index] = std::make_unique<std::thread>(RunCpuCore, std::cref(system),
std::ref(*cores[index + 1]));
thread_to_cpu[core_threads[index]->get_id()] = cores[index + 1].get();
}
}
void CpuCoreManager::Shutdown() {
barrier->NotifyEnd();
if (Settings::values.use_multi_core) {
for (auto& thread : core_threads) {
thread->join();
thread.reset();
}
}
thread_to_cpu.clear();
for (auto& cpu_core : cores) {
cpu_core->Shutdown();
cpu_core.reset();
}
exclusive_monitor.reset();
barrier.reset();
}
Cpu& CpuCoreManager::GetCore(std::size_t index) {
return *cores.at(index);
}
const Cpu& CpuCoreManager::GetCore(std::size_t index) const {
return *cores.at(index);
}
ExclusiveMonitor& CpuCoreManager::GetExclusiveMonitor() {
return *exclusive_monitor;
}
const ExclusiveMonitor& CpuCoreManager::GetExclusiveMonitor() const {
return *exclusive_monitor;
}
Cpu& CpuCoreManager::GetCurrentCore() {
if (Settings::values.use_multi_core) {
const auto& search = thread_to_cpu.find(std::this_thread::get_id());
ASSERT(search != thread_to_cpu.end());
ASSERT(search->second);
return *search->second;
}
// Otherwise, use single-threaded mode active_core variable
return *cores[active_core];
}
const Cpu& CpuCoreManager::GetCurrentCore() const {
if (Settings::values.use_multi_core) {
const auto& search = thread_to_cpu.find(std::this_thread::get_id());
ASSERT(search != thread_to_cpu.end());
ASSERT(search->second);
return *search->second;
}
// Otherwise, use single-threaded mode active_core variable
return *cores[active_core];
}
void CpuCoreManager::RunLoop(bool tight_loop) {
// Update thread_to_cpu in case Core 0 is run from a different host thread
thread_to_cpu[std::this_thread::get_id()] = cores[0].get();
if (GDBStub::IsServerEnabled()) {
GDBStub::HandlePacket();
// If the loop is halted and we want to step, use a tiny (1) number of instructions to
// execute. Otherwise, get out of the loop function.
if (GDBStub::GetCpuHaltFlag()) {
if (GDBStub::GetCpuStepFlag()) {
tight_loop = false;
} else {
return;
}
}
}
auto& core_timing = system.CoreTiming();
core_timing.ResetRun();
bool keep_running{};
do {
keep_running = false;
for (active_core = 0; active_core < NUM_CPU_CORES; ++active_core) {
core_timing.SwitchContext(active_core);
if (core_timing.CanCurrentContextRun()) {
cores[active_core]->RunLoop(tight_loop);
}
keep_running |= core_timing.CanCurrentContextRun();
}
} while (keep_running);
if (GDBStub::IsServerEnabled()) {
GDBStub::SetCpuStepFlag(false);
}
}
void CpuCoreManager::InvalidateAllInstructionCaches() {
for (auto& cpu : cores) {
cpu->ArmInterface().ClearInstructionCache();
}
}
} // namespace Core

@ -1,62 +0,0 @@
// Copyright 2018 yuzu emulator team
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <array>
#include <map>
#include <memory>
#include <thread>
namespace Core {
class Cpu;
class CpuBarrier;
class ExclusiveMonitor;
class System;
class CpuCoreManager {
public:
explicit CpuCoreManager(System& system);
CpuCoreManager(const CpuCoreManager&) = delete;
CpuCoreManager(CpuCoreManager&&) = delete;
~CpuCoreManager();
CpuCoreManager& operator=(const CpuCoreManager&) = delete;
CpuCoreManager& operator=(CpuCoreManager&&) = delete;
void Initialize();
void StartThreads();
void Shutdown();
Cpu& GetCore(std::size_t index);
const Cpu& GetCore(std::size_t index) const;
Cpu& GetCurrentCore();
const Cpu& GetCurrentCore() const;
ExclusiveMonitor& GetExclusiveMonitor();
const ExclusiveMonitor& GetExclusiveMonitor() const;
void RunLoop(bool tight_loop);
void InvalidateAllInstructionCaches();
private:
static constexpr std::size_t NUM_CPU_CORES = 4;
std::unique_ptr<ExclusiveMonitor> exclusive_monitor;
std::unique_ptr<CpuBarrier> barrier;
std::array<std::unique_ptr<Cpu>, NUM_CPU_CORES> cores;
std::array<std::unique_ptr<std::thread>, NUM_CPU_CORES - 1> core_threads;
std::size_t active_core{}; ///< Active core, only used in single thread mode
/// Map of guest threads to CPU cores
std::map<std::thread::id, Cpu*> thread_to_cpu;
System& system;
};
} // namespace Core

@ -0,0 +1,83 @@
// Copyright 2018 yuzu emulator team
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include "common/assert.h"
#include "core/arm/exclusive_monitor.h"
#include "core/core.h"
#include "core/core_manager.h"
#include "core/core_timing.h"
#include "core/cpu_manager.h"
#include "core/gdbstub/gdbstub.h"
#include "core/settings.h"
namespace Core {
CpuManager::CpuManager(System& system) : system{system} {}
CpuManager::~CpuManager() = default;
void CpuManager::Initialize() {
for (std::size_t index = 0; index < core_managers.size(); ++index) {
core_managers[index] = std::make_unique<CoreManager>(system, index);
}
}
void CpuManager::Shutdown() {
for (auto& cpu_core : core_managers) {
cpu_core.reset();
}
}
CoreManager& CpuManager::GetCoreManager(std::size_t index) {
return *core_managers.at(index);
}
const CoreManager& CpuManager::GetCoreManager(std::size_t index) const {
return *core_managers.at(index);
}
CoreManager& CpuManager::GetCurrentCoreManager() {
// Otherwise, use single-threaded mode active_core variable
return *core_managers[active_core];
}
const CoreManager& CpuManager::GetCurrentCoreManager() const {
// Otherwise, use single-threaded mode active_core variable
return *core_managers[active_core];
}
void CpuManager::RunLoop(bool tight_loop) {
if (GDBStub::IsServerEnabled()) {
GDBStub::HandlePacket();
// If the loop is halted and we want to step, use a tiny (1) number of instructions to
// execute. Otherwise, get out of the loop function.
if (GDBStub::GetCpuHaltFlag()) {
if (GDBStub::GetCpuStepFlag()) {
tight_loop = false;
} else {
return;
}
}
}
auto& core_timing = system.CoreTiming();
core_timing.ResetRun();
bool keep_running{};
do {
keep_running = false;
for (active_core = 0; active_core < NUM_CPU_CORES; ++active_core) {
core_timing.SwitchContext(active_core);
if (core_timing.CanCurrentContextRun()) {
core_managers[active_core]->RunLoop(tight_loop);
}
keep_running |= core_timing.CanCurrentContextRun();
}
} while (keep_running);
if (GDBStub::IsServerEnabled()) {
GDBStub::SetCpuStepFlag(false);
}
}
} // namespace Core

@ -0,0 +1,50 @@
// Copyright 2018 yuzu emulator team
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <array>
#include <memory>
namespace Core {
class CoreManager;
class System;
class CpuManager {
public:
explicit CpuManager(System& system);
CpuManager(const CpuManager&) = delete;
CpuManager(CpuManager&&) = delete;
~CpuManager();
CpuManager& operator=(const CpuManager&) = delete;
CpuManager& operator=(CpuManager&&) = delete;
void Initialize();
void Shutdown();
CoreManager& GetCoreManager(std::size_t index);
const CoreManager& GetCoreManager(std::size_t index) const;
CoreManager& GetCurrentCoreManager();
const CoreManager& GetCurrentCoreManager() const;
std::size_t GetActiveCoreIndex() const {
return active_core;
}
void RunLoop(bool tight_loop);
private:
static constexpr std::size_t NUM_CPU_CORES = 4;
std::array<std::unique_ptr<CoreManager>, NUM_CPU_CORES> core_managers;
std::size_t active_core{}; ///< Active core, only used in single thread mode
System& system;
};
} // namespace Core

@ -35,7 +35,7 @@
#include "common/swap.h"
#include "core/arm/arm_interface.h"
#include "core/core.h"
#include "core/core_cpu.h"
#include "core/core_manager.h"
#include "core/gdbstub/gdbstub.h"
#include "core/hle/kernel/process.h"
#include "core/hle/kernel/scheduler.h"

@ -8,7 +8,6 @@
#include "common/assert.h"
#include "common/common_types.h"
#include "core/core.h"
#include "core/core_cpu.h"
#include "core/hle/kernel/address_arbiter.h"
#include "core/hle/kernel/errors.h"
#include "core/hle/kernel/scheduler.h"

@ -3,13 +3,15 @@
// Refer to the license.txt file included.
#include <atomic>
#include <functional>
#include <memory>
#include <mutex>
#include <utility>
#include "common/assert.h"
#include "common/logging/log.h"
#include "core/arm/arm_interface.h"
#include "core/arm/exclusive_monitor.h"
#include "core/core.h"
#include "core/core_timing.h"
#include "core/core_timing_util.h"
@ -17,6 +19,7 @@
#include "core/hle/kernel/errors.h"
#include "core/hle/kernel/handle_table.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/physical_core.h"
#include "core/hle/kernel/process.h"
#include "core/hle/kernel/resource_limit.h"
#include "core/hle/kernel/scheduler.h"
@ -98,6 +101,7 @@ struct KernelCore::Impl {
void Initialize(KernelCore& kernel) {
Shutdown();
InitializePhysicalCores(kernel);
InitializeSystemResourceLimit(kernel);
InitializeThreads();
InitializePreemption();
@ -121,6 +125,21 @@ struct KernelCore::Impl {
global_scheduler.Shutdown();
named_ports.clear();
for (auto& core : cores) {
core.Shutdown();
}
cores.clear();
exclusive_monitor.reset(nullptr);
}
void InitializePhysicalCores(KernelCore& kernel) {
exclusive_monitor =
Core::MakeExclusiveMonitor(system.Memory(), global_scheduler.CpuCoresCount());
for (std::size_t i = 0; i < global_scheduler.CpuCoresCount(); i++) {
cores.emplace_back(system, kernel, i, *exclusive_monitor);
}
}
// Creates the default system resource limit
@ -186,6 +205,9 @@ struct KernelCore::Impl {
/// the ConnectToPort SVC.
NamedPortTable named_ports;
std::unique_ptr<Core::ExclusiveMonitor> exclusive_monitor;
std::vector<Kernel::PhysicalCore> cores;
// System context
Core::System& system;
};
@ -240,6 +262,34 @@ const Kernel::GlobalScheduler& KernelCore::GlobalScheduler() const {
return impl->global_scheduler;
}
Kernel::PhysicalCore& KernelCore::PhysicalCore(std::size_t id) {
return impl->cores[id];
}
const Kernel::PhysicalCore& KernelCore::PhysicalCore(std::size_t id) const {
return impl->cores[id];
}
Core::ExclusiveMonitor& KernelCore::GetExclusiveMonitor() {
return *impl->exclusive_monitor;
}
const Core::ExclusiveMonitor& KernelCore::GetExclusiveMonitor() const {
return *impl->exclusive_monitor;
}
void KernelCore::InvalidateAllInstructionCaches() {
for (std::size_t i = 0; i < impl->global_scheduler.CpuCoresCount(); i++) {
PhysicalCore(i).ArmInterface().ClearInstructionCache();
}
}
void KernelCore::PrepareReschedule(std::size_t id) {
if (id < impl->global_scheduler.CpuCoresCount()) {
impl->cores[id].Stop();
}
}
void KernelCore::AddNamedPort(std::string name, std::shared_ptr<ClientPort> port) {
impl->named_ports.emplace(std::move(name), std::move(port));
}

@ -11,8 +11,9 @@
#include "core/hle/kernel/object.h"
namespace Core {
class ExclusiveMonitor;
class System;
}
} // namespace Core
namespace Core::Timing {
class CoreTiming;
@ -25,6 +26,7 @@ class AddressArbiter;
class ClientPort;
class GlobalScheduler;
class HandleTable;
class PhysicalCore;
class Process;
class ResourceLimit;
class Thread;
@ -84,6 +86,21 @@ public:
/// Gets the sole instance of the global scheduler
const Kernel::GlobalScheduler& GlobalScheduler() const;
/// Gets the an instance of the respective physical CPU core.
Kernel::PhysicalCore& PhysicalCore(std::size_t id);
/// Gets the an instance of the respective physical CPU core.
const Kernel::PhysicalCore& PhysicalCore(std::size_t id) const;
/// Stops execution of 'id' core, in order to reschedule a new thread.
void PrepareReschedule(std::size_t id);
Core::ExclusiveMonitor& GetExclusiveMonitor();
const Core::ExclusiveMonitor& GetExclusiveMonitor() const;
void InvalidateAllInstructionCaches();
/// Adds a port to the named port table
void AddNamedPort(std::string name, std::shared_ptr<ClientPort> port);

@ -0,0 +1,52 @@
// Copyright 2020 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include "common/logging/log.h"
#include "core/arm/arm_interface.h"
#ifdef ARCHITECTURE_x86_64
#include "core/arm/dynarmic/arm_dynarmic.h"
#endif
#include "core/arm/exclusive_monitor.h"
#include "core/arm/unicorn/arm_unicorn.h"
#include "core/core.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/physical_core.h"
#include "core/hle/kernel/scheduler.h"
#include "core/hle/kernel/thread.h"
namespace Kernel {
PhysicalCore::PhysicalCore(Core::System& system, KernelCore& kernel, std::size_t id,
Core::ExclusiveMonitor& exclusive_monitor)
: core_index{id}, kernel{kernel} {
#ifdef ARCHITECTURE_x86_64
arm_interface = std::make_shared<Core::ARM_Dynarmic>(system, exclusive_monitor, core_index);
#else
arm_interface = std::make_shared<Core::ARM_Unicorn>(system);
LOG_WARNING(Core, "CPU JIT requested, but Dynarmic not available");
#endif
scheduler = std::make_shared<Kernel::Scheduler>(system, *arm_interface, core_index);
}
PhysicalCore::~PhysicalCore() = default;
void PhysicalCore::Run() {
arm_interface->Run();
arm_interface->ClearExclusiveState();
}
void PhysicalCore::Step() {
arm_interface->Step();
}
void PhysicalCore::Stop() {
arm_interface->PrepareReschedule();
}
void PhysicalCore::Shutdown() {
scheduler->Shutdown();
}
} // namespace Kernel

@ -0,0 +1,74 @@
// Copyright 2020 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <cstddef>
#include <memory>
namespace Kernel {
class Scheduler;
} // namespace Kernel
namespace Core {
class ARM_Interface;
class ExclusiveMonitor;
class System;
} // namespace Core
namespace Kernel {
class PhysicalCore {
public:
PhysicalCore(Core::System& system, KernelCore& kernel, std::size_t id,
Core::ExclusiveMonitor& exclusive_monitor);
~PhysicalCore();
/// Execute current jit state
void Run();
/// Execute a single instruction in current jit.
void Step();
/// Stop JIT execution/exit
void Stop();
// Shutdown this physical core.
void Shutdown();
Core::ARM_Interface& ArmInterface() {
return *arm_interface;
}
const Core::ARM_Interface& ArmInterface() const {
return *arm_interface;
}
bool IsMainCore() const {
return core_index == 0;
}
bool IsSystemCore() const {
return core_index == 3;
}
std::size_t CoreIndex() const {
return core_index;
}
Kernel::Scheduler& Scheduler() {
return *scheduler;
}
const Kernel::Scheduler& Scheduler() const {
return *scheduler;
}
private:
std::size_t core_index;
KernelCore& kernel;
std::shared_ptr<Core::ARM_Interface> arm_interface;
std::shared_ptr<Kernel::Scheduler> scheduler;
};
} // namespace Kernel

@ -14,7 +14,6 @@
#include "common/logging/log.h"
#include "core/arm/arm_interface.h"
#include "core/core.h"
#include "core/core_cpu.h"
#include "core/core_timing.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/process.h"

@ -15,7 +15,7 @@
#include "common/string_util.h"
#include "core/arm/exclusive_monitor.h"
#include "core/core.h"
#include "core/core_cpu.h"
#include "core/core_manager.h"
#include "core/core_timing.h"
#include "core/core_timing_util.h"
#include "core/hle/kernel/address_arbiter.h"

@ -13,7 +13,6 @@
#include "common/thread_queue_list.h"
#include "core/arm/arm_interface.h"
#include "core/core.h"
#include "core/core_cpu.h"
#include "core/core_timing.h"
#include "core/core_timing_util.h"
#include "core/hle/kernel/errors.h"
@ -356,7 +355,7 @@ void Thread::SetActivity(ThreadActivity value) {
// Set status if not waiting
if (status == ThreadStatus::Ready || status == ThreadStatus::Running) {
SetStatus(ThreadStatus::Paused);
Core::System::GetInstance().CpuCore(processor_id).PrepareReschedule();
kernel.PrepareReschedule(processor_id);
}
} else if (status == ThreadStatus::Paused) {
// Ready to reschedule

@ -7,7 +7,6 @@
#include "common/common_types.h"
#include "common/logging/log.h"
#include "core/core.h"
#include "core/core_cpu.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/object.h"
#include "core/hle/kernel/process.h"
@ -96,7 +95,7 @@ void WaitObject::WakeupWaitingThread(std::shared_ptr<Thread> thread) {
}
if (resume) {
thread->ResumeFromWait();
Core::System::GetInstance().PrepareReschedule(thread->GetProcessorID());
kernel.PrepareReschedule(thread->GetProcessorID());
}
}

Loading…
Cancel
Save