hle: Move SVC code to kernel namespace.

pull/8/head
bunnei 7 years ago
parent 72f671fd7a
commit 480906fe1b

@ -43,6 +43,7 @@ set(SRCS
hle/kernel/server_port.cpp
hle/kernel/server_session.cpp
hle/kernel/shared_memory.cpp
hle/kernel/svc.cpp
hle/kernel/thread.cpp
hle/kernel/timer.cpp
hle/kernel/vm_manager.cpp
@ -63,7 +64,6 @@ set(SRCS
hle/service/sm/controller.cpp
hle/service/sm/sm.cpp
hle/shared_page.cpp
hle/svc.cpp
hw/aes/arithmetic128.cpp
hw/aes/ccm.cpp
hw/aes/key.cpp
@ -116,7 +116,6 @@ set(HEADERS
frontend/input.h
gdbstub/gdbstub.h
hle/config_mem.h
hle/function_wrappers.h
hle/ipc.h
hle/ipc_helpers.h
hle/kernel/address_arbiter.h
@ -139,6 +138,8 @@ set(HEADERS
hle/kernel/session.h
hle/kernel/shared_memory.h
hle/kernel/sync_object.h
hle/kernel/svc.h
hle/kernel/svc_wrap.h
hle/kernel/thread.h
hle/kernel/timer.h
hle/kernel/vm_manager.h
@ -160,7 +161,6 @@ set(HEADERS
hle/service/sm/controller.h
hle/service/sm/sm.h
hle/shared_page.h
hle/svc.h
hw/aes/arithmetic128.h
hw/aes/ccm.h
hw/aes/key.h

@ -5,7 +5,6 @@
#include "common/logging/log.h"
#include "common/microprofile.h"
#include "core/core_timing.h"
#include "core/hle/function_wrappers.h"
#include "core/hle/kernel/client_port.h"
#include "core/hle/kernel/client_session.h"
#include "core/hle/kernel/handle_table.h"
@ -13,27 +12,22 @@
#include "core/hle/kernel/object_address_table.h"
#include "core/hle/kernel/process.h"
#include "core/hle/kernel/resource_limit.h"
#include "core/hle/kernel/svc.h"
#include "core/hle/kernel/svc_wrap.h"
#include "core/hle/kernel/sync_object.h"
#include "core/hle/kernel/thread.h"
#include "core/hle/lock.h"
#include "core/hle/result.h"
#include "core/hle/service/service.h"
////////////////////////////////////////////////////////////////////////////////////////////////////
// Namespace SVC
using Kernel::ERR_INVALID_HANDLE;
using Kernel::Handle;
using Kernel::SharedPtr;
namespace SVC {
namespace Kernel {
/// Set the process heap to a given Size. It can both extend and shrink the heap.
static ResultCode SetHeapSize(VAddr* heap_addr, u64 heap_size) {
LOG_TRACE(Kernel_SVC, "called, heap_size=0x%llx", heap_size);
auto& process = *Kernel::g_current_process;
auto& process = *g_current_process;
CASCADE_RESULT(*heap_addr, process.HeapAllocate(Memory::HEAP_VADDR, heap_size,
Kernel::VMAPermission::ReadWrite));
VMAPermission::ReadWrite));
return RESULT_SUCCESS;
}
@ -41,48 +35,48 @@ static ResultCode SetHeapSize(VAddr* heap_addr, u64 heap_size) {
static ResultCode MapMemory(VAddr dst_addr, VAddr src_addr, u64 size) {
LOG_TRACE(Kernel_SVC, "called, dst_addr=0x%llx, src_addr=0x%llx, size=0x%llx", dst_addr,
src_addr, size);
return Kernel::g_current_process->MirrorMemory(dst_addr, src_addr, size);
return g_current_process->MirrorMemory(dst_addr, src_addr, size);
}
/// Unmaps a region that was previously mapped with svcMapMemory
static ResultCode UnmapMemory(VAddr dst_addr, VAddr src_addr, u64 size) {
LOG_TRACE(Kernel_SVC, "called, dst_addr=0x%llx, src_addr=0x%llx, size=0x%llx", dst_addr,
src_addr, size);
return Kernel::g_current_process->UnmapMemory(dst_addr, src_addr, size);
return g_current_process->UnmapMemory(dst_addr, src_addr, size);
}
/// Connect to an OS service given the port name, returns the handle to the port to out
static ResultCode ConnectToPort(Kernel::Handle* out_handle, VAddr port_name_address) {
static ResultCode ConnectToPort(Handle* out_handle, VAddr port_name_address) {
if (!Memory::IsValidVirtualAddress(port_name_address))
return Kernel::ERR_NOT_FOUND;
return ERR_NOT_FOUND;
static constexpr std::size_t PortNameMaxLength = 11;
// Read 1 char beyond the max allowed port name to detect names that are too long.
std::string port_name = Memory::ReadCString(port_name_address, PortNameMaxLength + 1);
if (port_name.size() > PortNameMaxLength)
return Kernel::ERR_PORT_NAME_TOO_LONG;
return ERR_PORT_NAME_TOO_LONG;
LOG_TRACE(Kernel_SVC, "called port_name=%s", port_name.c_str());
auto it = Service::g_kernel_named_ports.find(port_name);
if (it == Service::g_kernel_named_ports.end()) {
LOG_WARNING(Kernel_SVC, "tried to connect to unknown port: %s", port_name.c_str());
return Kernel::ERR_NOT_FOUND;
return ERR_NOT_FOUND;
}
auto client_port = it->second;
SharedPtr<Kernel::ClientSession> client_session;
SharedPtr<ClientSession> client_session;
CASCADE_RESULT(client_session, client_port->Connect());
// Return the client session
CASCADE_RESULT(*out_handle, Kernel::g_handle_table.Create(client_session));
CASCADE_RESULT(*out_handle, g_handle_table.Create(client_session));
return RESULT_SUCCESS;
}
/// Makes a blocking IPC call to an OS service.
static ResultCode SendSyncRequest(Kernel::Handle handle) {
SharedPtr<Kernel::SyncObject> session = Kernel::g_handle_table.Get<Kernel::SyncObject>(handle);
static ResultCode SendSyncRequest(Handle handle) {
SharedPtr<SyncObject> session = g_handle_table.Get<SyncObject>(handle);
if (!session) {
LOG_ERROR(Kernel_SVC, "called with invalid handle=0x%08X", handle);
return ERR_INVALID_HANDLE;
@ -94,15 +88,15 @@ static ResultCode SendSyncRequest(Kernel::Handle handle) {
// TODO(Subv): svcSendSyncRequest should put the caller thread to sleep while the server
// responds and cause a reschedule.
return session->SendSyncRequest(Kernel::GetCurrentThread());
return session->SendSyncRequest(GetCurrentThread());
}
/// Get the ID for the specified thread.
static ResultCode GetThreadId(u32* thread_id, Kernel::Handle thread_handle) {
static ResultCode GetThreadId(u32* thread_id, Handle thread_handle) {
LOG_TRACE(Kernel_SVC, "called thread=0x%08X", thread_handle);
const SharedPtr<Kernel::Thread> thread =
Kernel::g_handle_table.Get<Kernel::Thread>(thread_handle);
const SharedPtr<Thread> thread =
g_handle_table.Get<Thread>(thread_handle);
if (!thread) {
return ERR_INVALID_HANDLE;
}
@ -112,11 +106,11 @@ static ResultCode GetThreadId(u32* thread_id, Kernel::Handle thread_handle) {
}
/// Get the ID of the specified process
static ResultCode GetProcessId(u32* process_id, Kernel::Handle process_handle) {
static ResultCode GetProcessId(u32* process_id, Handle process_handle) {
LOG_TRACE(Kernel_SVC, "called process=0x%08X", process_handle);
const SharedPtr<Kernel::Process> process =
Kernel::g_handle_table.Get<Kernel::Process>(process_handle);
const SharedPtr<Process> process =
g_handle_table.Get<Process>(process_handle);
if (!process) {
return ERR_INVALID_HANDLE;
}
@ -141,18 +135,18 @@ static ResultCode LockMutex(Handle holding_thread_handle, VAddr mutex_addr,
"requesting_current_thread_handle=0x%08X",
holding_thread_handle, mutex_addr, requesting_thread_handle);
SharedPtr<Kernel::Thread> holding_thread =
Kernel::g_handle_table.Get<Kernel::Thread>(holding_thread_handle);
SharedPtr<Kernel::Thread> requesting_thread =
Kernel::g_handle_table.Get<Kernel::Thread>(requesting_thread_handle);
SharedPtr<Thread> holding_thread =
g_handle_table.Get<Thread>(holding_thread_handle);
SharedPtr<Thread> requesting_thread =
g_handle_table.Get<Thread>(requesting_thread_handle);
ASSERT(holding_thread);
ASSERT(requesting_thread);
SharedPtr<Kernel::Mutex> mutex = Kernel::g_object_address_table.Get<Kernel::Mutex>(mutex_addr);
SharedPtr<Mutex> mutex = g_object_address_table.Get<Mutex>(mutex_addr);
if (!mutex) {
// Create a new mutex for the specified address if one does not already exist
mutex = Kernel::Mutex::Create(holding_thread, mutex_addr);
mutex = Mutex::Create(holding_thread, mutex_addr);
mutex->name = Common::StringFromFormat("mutex-%llx", mutex_addr);
}
@ -175,10 +169,10 @@ static ResultCode LockMutex(Handle holding_thread_handle, VAddr mutex_addr,
static ResultCode UnlockMutex(VAddr mutex_addr) {
LOG_TRACE(Kernel_SVC, "called mutex_addr=0x%llx", mutex_addr);
SharedPtr<Kernel::Mutex> mutex = Kernel::g_object_address_table.Get<Kernel::Mutex>(mutex_addr);
SharedPtr<Mutex> mutex = g_object_address_table.Get<Mutex>(mutex_addr);
ASSERT(mutex);
return mutex->Release(Kernel::GetCurrentThread());
return mutex->Release(GetCurrentThread());
}
/// Break program execution
@ -199,7 +193,7 @@ static ResultCode GetInfo(u64* result, u64 info_id, u64 handle, u64 info_sub_id)
LOG_TRACE(Kernel_SVC, "called info_id=0x%X, info_sub_id=0x%X, handle=0x%08X", info_id,
info_sub_id, handle);
auto& vm_manager = Kernel::g_current_process->vm_manager;
auto& vm_manager = g_current_process->vm_manager;
switch (static_cast<GetInfoType>(info_id)) {
case GetInfoType::TotalMemoryUsage:
*result = vm_manager.GetTotalMemoryUsage();
@ -231,7 +225,7 @@ static ResultCode GetInfo(u64* result, u64 info_id, u64 handle, u64 info_sub_id)
/// Gets the priority for the specified thread
static ResultCode GetThreadPriority(u32* priority, Handle handle) {
const SharedPtr<Kernel::Thread> thread = Kernel::g_handle_table.Get<Kernel::Thread>(handle);
const SharedPtr<Thread> thread = g_handle_table.Get<Thread>(handle);
if (!thread)
return ERR_INVALID_HANDLE;
@ -242,18 +236,18 @@ static ResultCode GetThreadPriority(u32* priority, Handle handle) {
/// Sets the priority for the specified thread
static ResultCode SetThreadPriority(Handle handle, u32 priority) {
if (priority > THREADPRIO_LOWEST) {
return Kernel::ERR_OUT_OF_RANGE;
return ERR_OUT_OF_RANGE;
}
SharedPtr<Kernel::Thread> thread = Kernel::g_handle_table.Get<Kernel::Thread>(handle);
SharedPtr<Thread> thread = g_handle_table.Get<Thread>(handle);
if (!thread)
return Kernel::ERR_INVALID_HANDLE;
return ERR_INVALID_HANDLE;
// Note: The kernel uses the current process's resource limit instead of
// the one from the thread owner's resource limit.
SharedPtr<Kernel::ResourceLimit>& resource_limit = Kernel::g_current_process->resource_limit;
if (resource_limit->GetMaxResourceValue(Kernel::ResourceTypes::PRIORITY) > priority) {
return Kernel::ERR_NOT_AUTHORIZED;
SharedPtr<ResourceLimit>& resource_limit = g_current_process->resource_limit;
if (resource_limit->GetMaxResourceValue(ResourceTypes::PRIORITY) > priority) {
return ERR_NOT_AUTHORIZED;
}
thread->SetPriority(priority);
@ -275,19 +269,18 @@ static u32 GetCurrentProcessorNumber() {
/// Query process memory
static ResultCode QueryProcessMemory(MemoryInfo* memory_info, PageInfo* /*page_info*/,
Kernel::Handle process_handle, u64 addr) {
using Kernel::Process;
Kernel::SharedPtr<Process> process = Kernel::g_handle_table.Get<Process>(process_handle);
Handle process_handle, u64 addr) {
SharedPtr<Process> process = g_handle_table.Get<Process>(process_handle);
if (!process) {
return ERR_INVALID_HANDLE;
}
auto vma = process->vm_manager.FindVMA(addr);
memory_info->attributes = 0;
if (vma == Kernel::g_current_process->vm_manager.vma_map.end()) {
if (vma == g_current_process->vm_manager.vma_map.end()) {
memory_info->base_address = 0;
memory_info->permission = static_cast<u32>(Kernel::VMAPermission::None);
memory_info->permission = static_cast<u32>(VMAPermission::None);
memory_info->size = 0;
memory_info->type = static_cast<u32>(Kernel::MemoryState::Free);
memory_info->type = static_cast<u32>(MemoryState::Free);
} else {
memory_info->base_address = vma->second.base;
memory_info->permission = static_cast<u32>(vma->second.permissions);
@ -302,25 +295,25 @@ static ResultCode QueryProcessMemory(MemoryInfo* memory_info, PageInfo* /*page_i
/// Query memory
static ResultCode QueryMemory(MemoryInfo* memory_info, PageInfo* page_info, VAddr addr) {
LOG_TRACE(Kernel_SVC, "called, addr=%llx", addr);
return QueryProcessMemory(memory_info, page_info, Kernel::CurrentProcess, addr);
return QueryProcessMemory(memory_info, page_info, CurrentProcess, addr);
}
/// Exits the current process
static void ExitProcess() {
LOG_INFO(Kernel_SVC, "Process %u exiting", Kernel::g_current_process->process_id);
LOG_INFO(Kernel_SVC, "Process %u exiting", g_current_process->process_id);
ASSERT_MSG(Kernel::g_current_process->status == Kernel::ProcessStatus::Running,
ASSERT_MSG(g_current_process->status == ProcessStatus::Running,
"Process has already exited");
Kernel::g_current_process->status = Kernel::ProcessStatus::Exited;
g_current_process->status = ProcessStatus::Exited;
// Stop all the process threads that are currently waiting for objects.
auto& thread_list = Kernel::GetThreadList();
auto& thread_list = GetThreadList();
for (auto& thread : thread_list) {
if (thread->owner_process != Kernel::g_current_process)
if (thread->owner_process != g_current_process)
continue;
if (thread == Kernel::GetCurrentThread())
if (thread == GetCurrentThread())
continue;
// TODO(Subv): When are the other running/ready threads terminated?
@ -332,7 +325,7 @@ static void ExitProcess() {
}
// Kill the current thread
Kernel::GetCurrentThread()->Stop();
GetCurrentThread()->Stop();
Core::System::GetInstance().PrepareReschedule();
}
@ -343,17 +336,17 @@ static ResultCode CreateThread(Handle* out_handle, VAddr entry_point, u64 arg, V
std::string name = Common::StringFromFormat("unknown-%llx", entry_point);
if (priority > THREADPRIO_LOWEST) {
return Kernel::ERR_OUT_OF_RANGE;
return ERR_OUT_OF_RANGE;
}
SharedPtr<Kernel::ResourceLimit>& resource_limit = Kernel::g_current_process->resource_limit;
if (resource_limit->GetMaxResourceValue(Kernel::ResourceTypes::PRIORITY) > priority) {
return Kernel::ERR_NOT_AUTHORIZED;
SharedPtr<ResourceLimit>& resource_limit = g_current_process->resource_limit;
if (resource_limit->GetMaxResourceValue(ResourceTypes::PRIORITY) > priority) {
return ERR_NOT_AUTHORIZED;
}
if (processor_id == THREADPROCESSORID_DEFAULT) {
// Set the target CPU to the one specified in the process' exheader.
processor_id = Kernel::g_current_process->ideal_processor;
processor_id = g_current_process->ideal_processor;
ASSERT(processor_id != THREADPROCESSORID_DEFAULT);
}
@ -374,14 +367,14 @@ static ResultCode CreateThread(Handle* out_handle, VAddr entry_point, u64 arg, V
break;
}
CASCADE_RESULT(SharedPtr<Kernel::Thread> thread,
Kernel::Thread::Create(name, entry_point, priority, arg, processor_id, stack_top,
Kernel::g_current_process));
CASCADE_RESULT(SharedPtr<Thread> thread,
Thread::Create(name, entry_point, priority, arg, processor_id, stack_top,
g_current_process));
thread->context.fpscr =
FPSCR_DEFAULT_NAN | FPSCR_FLUSH_TO_ZERO | FPSCR_ROUND_TOZERO; // 0x03C00000
CASCADE_RESULT(thread->guest_handle, Kernel::g_handle_table.Create(thread));
CASCADE_RESULT(thread->guest_handle, g_handle_table.Create(thread));
*out_handle = thread->guest_handle;
Core::System::GetInstance().PrepareReschedule();
@ -398,8 +391,8 @@ static ResultCode CreateThread(Handle* out_handle, VAddr entry_point, u64 arg, V
static ResultCode StartThread(Handle thread_handle) {
LOG_TRACE(Kernel_SVC, "called thread=0x%08X", thread_handle);
const SharedPtr<Kernel::Thread> thread =
Kernel::g_handle_table.Get<Kernel::Thread>(thread_handle);
const SharedPtr<Thread> thread =
g_handle_table.Get<Thread>(thread_handle);
if (!thread) {
return ERR_INVALID_HANDLE;
}
@ -413,7 +406,7 @@ static ResultCode StartThread(Handle thread_handle) {
static void ExitThread() {
LOG_TRACE(Kernel_SVC, "called, pc=0x%08X", Core::CPU().GetPC());
Kernel::ExitCurrentThread();
ExitCurrentThread();
Core::System::GetInstance().PrepareReschedule();
}
@ -423,14 +416,14 @@ static void SleepThread(s64 nanoseconds) {
// Don't attempt to yield execution if there are no available threads to run,
// this way we avoid a useless reschedule to the idle thread.
if (nanoseconds == 0 && !Kernel::HaveReadyThreads())
if (nanoseconds == 0 && !HaveReadyThreads())
return;
// Sleep current thread and check for next thread to schedule
Kernel::WaitCurrentThread_Sleep();
WaitCurrentThread_Sleep();
// Create an event to wake the thread up after the specified nanosecond delay has passed
Kernel::GetCurrentThread()->WakeAfterDelay(nanoseconds);
GetCurrentThread()->WakeAfterDelay(nanoseconds);
Core::System::GetInstance().PrepareReschedule();
}
@ -442,9 +435,9 @@ static ResultCode SignalProcessWideKey(VAddr addr, u32 target) {
}
/// Close a handle
static ResultCode CloseHandle(Kernel::Handle handle) {
static ResultCode CloseHandle(Handle handle) {
LOG_TRACE(Kernel_SVC, "Closing handle 0x%08X", handle);
return Kernel::g_handle_table.Close(handle);
return g_handle_table.Close(handle);
}
namespace {
@ -459,47 +452,47 @@ struct FunctionDef {
static const FunctionDef SVC_Table[] = {
{0x00, nullptr, "Unknown"},
{0x01, HLE::Wrap<SetHeapSize>, "svcSetHeapSize"},
{0x01, SvcWrap<SetHeapSize>, "svcSetHeapSize"},
{0x02, nullptr, "svcSetMemoryPermission"},
{0x03, nullptr, "svcSetMemoryAttribute"},
{0x04, HLE::Wrap<MapMemory>, "svcMapMemory"},
{0x05, HLE::Wrap<UnmapMemory>, "svcUnmapMemory"},
{0x06, HLE::Wrap<QueryMemory>, "svcQueryMemory"},
{0x07, HLE::Wrap<ExitProcess>, "svcExitProcess"},
{0x08, HLE::Wrap<CreateThread>, "svcCreateThread"},
{0x09, HLE::Wrap<StartThread>, "svcStartThread"},
{0x0A, HLE::Wrap<ExitThread>, "svcExitThread"},
{0x0B, HLE::Wrap<SleepThread>, "svcSleepThread"},
{0x0C, HLE::Wrap<GetThreadPriority>, "svcGetThreadPriority"},
{0x0D, HLE::Wrap<SetThreadPriority>, "svcSetThreadPriority"},
{0x04, SvcWrap<MapMemory>, "svcMapMemory"},
{0x05, SvcWrap<UnmapMemory>, "svcUnmapMemory"},
{0x06, SvcWrap<QueryMemory>, "svcQueryMemory"},
{0x07, SvcWrap<ExitProcess>, "svcExitProcess"},
{0x08, SvcWrap<CreateThread>, "svcCreateThread"},
{0x09, SvcWrap<StartThread>, "svcStartThread"},
{0x0A, SvcWrap<ExitThread>, "svcExitThread"},
{0x0B, SvcWrap<SleepThread>, "svcSleepThread"},
{0x0C, SvcWrap<GetThreadPriority>, "svcGetThreadPriority"},
{0x0D, SvcWrap<SetThreadPriority>, "svcSetThreadPriority"},
{0x0E, nullptr, "svcGetThreadCoreMask"},
{0x0F, nullptr, "svcSetThreadCoreMask"},
{0x10, HLE::Wrap<GetCurrentProcessorNumber>, "svcGetCurrentProcessorNumber"},
{0x10, SvcWrap<GetCurrentProcessorNumber>, "svcGetCurrentProcessorNumber"},
{0x11, nullptr, "svcSignalEvent"},
{0x12, nullptr, "svcClearEvent"},
{0x13, nullptr, "svcMapSharedMemory"},
{0x14, nullptr, "svcUnmapSharedMemory"},
{0x15, nullptr, "svcCreateTransferMemory"},
{0x16, HLE::Wrap<CloseHandle>, "svcCloseHandle"},
{0x16, SvcWrap<CloseHandle>, "svcCloseHandle"},
{0x17, nullptr, "svcResetSignal"},
{0x18, HLE::Wrap<WaitSynchronization>, "svcWaitSynchronization"},
{0x18, SvcWrap<WaitSynchronization>, "svcWaitSynchronization"},
{0x19, nullptr, "svcCancelSynchronization"},
{0x1A, HLE::Wrap<LockMutex>, "svcLockMutex"},
{0x1B, HLE::Wrap<UnlockMutex>, "svcUnlockMutex"},
{0x1A, SvcWrap<LockMutex>, "svcLockMutex"},
{0x1B, SvcWrap<UnlockMutex>, "svcUnlockMutex"},
{0x1C, nullptr, "svcWaitProcessWideKeyAtomic"},
{0x1D, HLE::Wrap<SignalProcessWideKey>, "svcSignalProcessWideKey"},
{0x1D, SvcWrap<SignalProcessWideKey>, "svcSignalProcessWideKey"},
{0x1E, nullptr, "svcGetSystemTick"},
{0x1F, HLE::Wrap<ConnectToPort>, "svcConnectToPort"},
{0x1F, SvcWrap<ConnectToPort>, "svcConnectToPort"},
{0x20, nullptr, "svcSendSyncRequestLight"},
{0x21, HLE::Wrap<SendSyncRequest>, "svcSendSyncRequest"},
{0x21, SvcWrap<SendSyncRequest>, "svcSendSyncRequest"},
{0x22, nullptr, "svcSendSyncRequestWithUserBuffer"},
{0x23, nullptr, "svcSendAsyncRequestWithUserBuffer"},
{0x24, HLE::Wrap<GetProcessId>, "svcGetProcessId"},
{0x25, HLE::Wrap<GetThreadId>, "svcGetThreadId"},
{0x26, HLE::Wrap<Break>, "svcBreak"},
{0x27, HLE::Wrap<OutputDebugString>, "svcOutputDebugString"},
{0x24, SvcWrap<GetProcessId>, "svcGetProcessId"},
{0x25, SvcWrap<GetThreadId>, "svcGetThreadId"},
{0x26, SvcWrap<Break>, "svcBreak"},
{0x27, SvcWrap<OutputDebugString>, "svcOutputDebugString"},
{0x28, nullptr, "svcReturnFromException"},
{0x29, HLE::Wrap<GetInfo>, "svcGetInfo"},
{0x29, SvcWrap<GetInfo>, "svcGetInfo"},
{0x2A, nullptr, "svcFlushEntireDataCache"},
{0x2B, nullptr, "svcFlushDataCache"},
{0x2C, nullptr, "svcMapPhysicalMemory"},
@ -616,4 +609,4 @@ void CallSVC(u32 immediate) {
}
}
} // namespace SVC
} // namespace Kernel

@ -1,4 +1,4 @@
// Copyright 2014 Citra Emulator Project
// Copyright 2018 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
@ -6,8 +6,7 @@
#include "common/common_types.h"
////////////////////////////////////////////////////////////////////////////////////////////////////
// SVC types
namespace Kernel {
struct MemoryInfo {
u64 base_address;
@ -21,11 +20,6 @@ struct PageInfo {
u64 flags;
};
////////////////////////////////////////////////////////////////////////////////////////////////////
// Namespace SVC
namespace SVC {
/// Values accepted by svcGetInfo
enum class GetInfoType : u64 {
// 1.0.0+
@ -41,4 +35,4 @@ enum class GetInfoType : u64 {
void CallSVC(u32 immediate);
} // namespace SVC
} // namespace Kernel

@ -1,4 +1,4 @@
// Copyright 2017 Citra Emulator Project
// Copyright 2018 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
@ -7,11 +7,11 @@
#include "common/common_types.h"
#include "core/arm/arm_interface.h"
#include "core/core.h"
#include "core/hle/kernel/svc.h"
#include "core/hle/result.h"
#include "core/hle/svc.h"
#include "core/memory.h"
namespace HLE {
namespace Kernel {
#define PARAM(n) Core::CPU().GetReg(n)
@ -27,22 +27,22 @@ static inline void FuncReturn(u64 res) {
// Function wrappers that return type ResultCode
template <ResultCode func(u64)>
void Wrap() {
void SvcWrap() {
FuncReturn(func(PARAM(0)).raw);
}
template <ResultCode func(u32)>
void Wrap() {
void SvcWrap() {
FuncReturn(func((u32)PARAM(0)).raw);
}
template <ResultCode func(u32, u32)>
void Wrap() {
void SvcWrap() {
FuncReturn(func((u32)PARAM(0), (u32)PARAM(1)).raw);
}
template <ResultCode func(u32*, u32)>
void Wrap() {
void SvcWrap() {
u32 param_1 = 0;
u32 retval = func(&param_1, (u32)PARAM(1)).raw;
Core::CPU().SetReg(1, param_1);
@ -50,7 +50,7 @@ void Wrap() {
}
template <ResultCode func(u32*, u64)>
void Wrap() {
void SvcWrap() {
u32 param_1 = 0;
u32 retval = func(&param_1, PARAM(1)).raw;
Core::CPU().SetReg(1, param_1);
@ -58,12 +58,12 @@ void Wrap() {
}
template <ResultCode func(u64, u32)>
void Wrap() {
void SvcWrap() {
FuncReturn(func(PARAM(0), (u32)PARAM(1)).raw);
}
template <ResultCode func(u64*, u64)>
void Wrap() {
void SvcWrap() {
u64 param_1 = 0;
u32 retval = func(&param_1, PARAM(1)).raw;
Core::CPU().SetReg(1, param_1);
@ -71,22 +71,22 @@ void Wrap() {
}
template <ResultCode func(u32, u64, u32)>
void Wrap() {
void SvcWrap() {
FuncReturn(func((u32)PARAM(0), PARAM(1), (u32)PARAM(2)).raw);
}
template <ResultCode func(u64, u64, u64)>
void Wrap() {
void SvcWrap() {
FuncReturn(func(PARAM(0), PARAM(1), PARAM(2)).raw);
}
template <ResultCode func(u64, u64, s64)>
void Wrap() {
void SvcWrap() {
FuncReturn(func(PARAM(1), PARAM(2), (s64)PARAM(3)).raw);
}
template <ResultCode func(u64*, u64, u64, u64)>
void Wrap() {
void SvcWrap() {
u64 param_1 = 0;
u32 retval = func(&param_1, PARAM(1), PARAM(2), PARAM(3)).raw;
Core::CPU().SetReg(1, param_1);
@ -94,7 +94,7 @@ void Wrap() {
}
template <ResultCode func(u32*, u64, u64, u64, u32, s32)>
void Wrap() {
void SvcWrap() {
u32 param_1 = 0;
u32 retval =
func(&param_1, PARAM(1), PARAM(2), PARAM(3), (u32)PARAM(4), (s32)(PARAM(5) & 0xFFFFFFFF))
@ -104,7 +104,7 @@ void Wrap() {
}
template <ResultCode func(MemoryInfo*, PageInfo*, u64)>
void Wrap() {
void SvcWrap() {
MemoryInfo memory_info = {};
PageInfo page_info = {};
u32 retval = func(&memory_info, &page_info, PARAM(2)).raw;
@ -122,7 +122,7 @@ void Wrap() {
// Function wrappers that return type u32
template <u32 func()>
void Wrap() {
void SvcWrap() {
FuncReturn(func());
}
@ -130,26 +130,26 @@ void Wrap() {
/// Function wrappers that return type void
template <void func()>
void Wrap() {
void SvcWrap() {
func();
}
template <void func(s64)>
void Wrap() {
void SvcWrap() {
func((s64)PARAM(0));
}
template <void func(u64, s32 len)>
void Wrap() {
void SvcWrap() {
func(PARAM(0), (s32)(PARAM(1) & 0xFFFFFFFF));
}
template <void func(u64, u64, u64)>
void Wrap() {
void SvcWrap() {
func(PARAM(0), PARAM(1), PARAM(2));
}
#undef PARAM
#undef FuncReturn
} // namespace HLE
} // namespace Kernel
Loading…
Cancel
Save