Merge pull request #202 from bunnei/scheduler-cleanup

Scheduler cleanup
pull/8/head
bunnei 7 years ago committed by GitHub
commit 23fe6f5be3
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -28,8 +28,6 @@ add_library(core STATIC
hle/config_mem.h
hle/ipc.h
hle/ipc_helpers.h
hle/kernel/address_arbiter.cpp
hle/kernel/address_arbiter.h
hle/kernel/client_port.cpp
hle/kernel/client_port.h
hle/kernel/client_session.cpp
@ -55,6 +53,8 @@ add_library(core STATIC
hle/kernel/process.h
hle/kernel/resource_limit.cpp
hle/kernel/resource_limit.h
hle/kernel/scheduler.cpp
hle/kernel/scheduler.h
hle/kernel/server_port.cpp
hle/kernel/server_port.h
hle/kernel/server_session.cpp

@ -133,7 +133,7 @@ void System::Reschedule() {
}
reschedule_pending = false;
Kernel::Reschedule();
Core::System::GetInstance().Scheduler().Reschedule();
}
System::ResultStatus System::Init(EmuWindow* emu_window, u32 system_mode) {
@ -141,19 +141,20 @@ System::ResultStatus System::Init(EmuWindow* emu_window, u32 system_mode) {
switch (Settings::values.cpu_core) {
case Settings::CpuCore::Unicorn:
cpu_core = std::make_unique<ARM_Unicorn>();
cpu_core = std::make_shared<ARM_Unicorn>();
break;
case Settings::CpuCore::Dynarmic:
default:
#ifdef ARCHITECTURE_x86_64
cpu_core = std::make_unique<ARM_Dynarmic>();
cpu_core = std::make_shared<ARM_Dynarmic>();
#else
cpu_core = std::make_unique<ARM_Unicorn>();
cpu_core = std::make_shared<ARM_Unicorn>();
LOG_WARNING(Core, "CPU JIT requested, but Dynarmic not available");
#endif
break;
}
scheduler = std::make_unique<Kernel::Scheduler>(cpu_core.get());
gpu_core = std::make_unique<Tegra::GPU>();
telemetry_session = std::make_unique<Core::TelemetrySession>();

@ -7,6 +7,7 @@
#include <memory>
#include <string>
#include "common/common_types.h"
#include "core/hle/kernel/scheduler.h"
#include "core/loader/loader.h"
#include "core/memory.h"
#include "core/perf_stats.h"
@ -107,6 +108,10 @@ public:
return *gpu_core;
}
Kernel::Scheduler& Scheduler() {
return *scheduler;
}
PerfStats perf_stats;
FrameLimiter frame_limiter;
@ -140,9 +145,8 @@ private:
/// AppLoader used to load the current executing application
std::unique_ptr<Loader::AppLoader> app_loader;
///< ARM11 CPU core
std::unique_ptr<ARM_Interface> cpu_core;
std::shared_ptr<ARM_Interface> cpu_core;
std::unique_ptr<Kernel::Scheduler> scheduler;
std::unique_ptr<Tegra::GPU> gpu_core;
/// When true, signals that a reschedule should happen

@ -1,91 +0,0 @@
// Copyright 2014 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include "common/common_types.h"
#include "common/logging/log.h"
#include "core/hle/kernel/address_arbiter.h"
#include "core/hle/kernel/errors.h"
#include "core/hle/kernel/thread.h"
#include "core/memory.h"
////////////////////////////////////////////////////////////////////////////////////////////////////
// Kernel namespace
namespace Kernel {
AddressArbiter::AddressArbiter() {}
AddressArbiter::~AddressArbiter() {}
SharedPtr<AddressArbiter> AddressArbiter::Create(std::string name) {
SharedPtr<AddressArbiter> address_arbiter(new AddressArbiter);
address_arbiter->name = std::move(name);
return address_arbiter;
}
ResultCode AddressArbiter::ArbitrateAddress(ArbitrationType type, VAddr address, s32 value,
u64 nanoseconds) {
switch (type) {
// Signal thread(s) waiting for arbitrate address...
case ArbitrationType::Signal:
// Negative value means resume all threads
if (value < 0) {
ArbitrateAllThreads(address);
} else {
// Resume first N threads
for (int i = 0; i < value; i++)
ArbitrateHighestPriorityThread(address);
}
break;
// Wait current thread (acquire the arbiter)...
case ArbitrationType::WaitIfLessThan:
if ((s32)Memory::Read32(address) < value) {
Kernel::WaitCurrentThread_ArbitrateAddress(address);
}
break;
case ArbitrationType::WaitIfLessThanWithTimeout:
if ((s32)Memory::Read32(address) < value) {
Kernel::WaitCurrentThread_ArbitrateAddress(address);
GetCurrentThread()->WakeAfterDelay(nanoseconds);
}
break;
case ArbitrationType::DecrementAndWaitIfLessThan: {
s32 memory_value = Memory::Read32(address);
if (memory_value < value) {
// Only change the memory value if the thread should wait
Memory::Write32(address, (s32)memory_value - 1);
Kernel::WaitCurrentThread_ArbitrateAddress(address);
}
break;
}
case ArbitrationType::DecrementAndWaitIfLessThanWithTimeout: {
s32 memory_value = Memory::Read32(address);
if (memory_value < value) {
// Only change the memory value if the thread should wait
Memory::Write32(address, (s32)memory_value - 1);
Kernel::WaitCurrentThread_ArbitrateAddress(address);
GetCurrentThread()->WakeAfterDelay(nanoseconds);
}
break;
}
default:
LOG_ERROR(Kernel, "unknown type=%d", type);
return ERR_INVALID_ENUM_VALUE_FND;
}
// The calls that use a timeout seem to always return a Timeout error even if they did not put
// the thread to sleep
if (type == ArbitrationType::WaitIfLessThanWithTimeout ||
type == ArbitrationType::DecrementAndWaitIfLessThanWithTimeout) {
return RESULT_TIMEOUT;
}
return RESULT_SUCCESS;
}
} // namespace Kernel

@ -1,60 +0,0 @@
// Copyright 2014 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include "common/common_types.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/result.h"
// Address arbiters are an underlying kernel synchronization object that can be created/used via
// supervisor calls (SVCs). They function as sort of a global lock. Typically, games/other CTR
// applications use them as an underlying mechanism to implement thread-safe barriers, events, and
// semphores.
////////////////////////////////////////////////////////////////////////////////////////////////////
// Kernel namespace
namespace Kernel {
enum class ArbitrationType : u32 {
Signal,
WaitIfLessThan,
DecrementAndWaitIfLessThan,
WaitIfLessThanWithTimeout,
DecrementAndWaitIfLessThanWithTimeout,
};
class AddressArbiter final : public Object {
public:
/**
* Creates an address arbiter.
*
* @param name Optional name used for debugging.
* @returns The created AddressArbiter.
*/
static SharedPtr<AddressArbiter> Create(std::string name = "Unknown");
std::string GetTypeName() const override {
return "Arbiter";
}
std::string GetName() const override {
return name;
}
static const HandleType HANDLE_TYPE = HandleType::AddressArbiter;
HandleType GetHandleType() const override {
return HANDLE_TYPE;
}
std::string name; ///< Name of address arbiter object (optional)
ResultCode ArbitrateAddress(ArbitrationType type, VAddr address, s32 value, u64 nanoseconds);
private:
AddressArbiter();
~AddressArbiter() override;
};
} // namespace Kernel

@ -0,0 +1,134 @@
// Copyright 2018 yuzu emulator team
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include "core/core_timing.h"
#include "core/hle/kernel/process.h"
#include "core/hle/kernel/scheduler.h"
namespace Kernel {
Scheduler::Scheduler(ARM_Interface* cpu_core) : cpu_core(cpu_core) {}
Scheduler::~Scheduler() {
for (auto& thread : thread_list) {
thread->Stop();
}
}
bool Scheduler::HaveReadyThreads() {
return ready_queue.get_first() != nullptr;
}
Thread* Scheduler::GetCurrentThread() const {
return current_thread.get();
}
Thread* Scheduler::PopNextReadyThread() {
Thread* next = nullptr;
Thread* thread = GetCurrentThread();
if (thread && thread->status == THREADSTATUS_RUNNING) {
// We have to do better than the current thread.
// This call returns null when that's not possible.
next = ready_queue.pop_first_better(thread->current_priority);
if (!next) {
// Otherwise just keep going with the current thread
next = thread;
}
} else {
next = ready_queue.pop_first();
}
return next;
}
void Scheduler::SwitchContext(Thread* new_thread) {
Thread* previous_thread = GetCurrentThread();
// Save context for previous thread
if (previous_thread) {
previous_thread->last_running_ticks = CoreTiming::GetTicks();
cpu_core->SaveContext(previous_thread->context);
if (previous_thread->status == THREADSTATUS_RUNNING) {
// This is only the case when a reschedule is triggered without the current thread
// yielding execution (i.e. an event triggered, system core time-sliced, etc)
ready_queue.push_front(previous_thread->current_priority, previous_thread);
previous_thread->status = THREADSTATUS_READY;
}
}
// Load context of new thread
if (new_thread) {
ASSERT_MSG(new_thread->status == THREADSTATUS_READY,
"Thread must be ready to become running.");
// Cancel any outstanding wakeup events for this thread
new_thread->CancelWakeupTimer();
auto previous_process = Kernel::g_current_process;
current_thread = new_thread;
ready_queue.remove(new_thread->current_priority, new_thread);
new_thread->status = THREADSTATUS_RUNNING;
if (previous_process != current_thread->owner_process) {
Kernel::g_current_process = current_thread->owner_process;
SetCurrentPageTable(&Kernel::g_current_process->vm_manager.page_table);
}
cpu_core->LoadContext(new_thread->context);
cpu_core->SetTlsAddress(new_thread->GetTLSAddress());
} else {
current_thread = nullptr;
// Note: We do not reset the current process and current page table when idling because
// technically we haven't changed processes, our threads are just paused.
}
}
void Scheduler::Reschedule() {
Thread* cur = GetCurrentThread();
Thread* next = PopNextReadyThread();
if (cur && next) {
LOG_TRACE(Kernel, "context switch %u -> %u", cur->GetObjectId(), next->GetObjectId());
} else if (cur) {
LOG_TRACE(Kernel, "context switch %u -> idle", cur->GetObjectId());
} else if (next) {
LOG_TRACE(Kernel, "context switch idle -> %u", next->GetObjectId());
}
SwitchContext(next);
}
void Scheduler::AddThread(SharedPtr<Thread> thread, u32 priority) {
thread_list.push_back(thread);
ready_queue.prepare(priority);
}
void Scheduler::RemoveThread(Thread* thread) {
thread_list.erase(std::remove(thread_list.begin(), thread_list.end(), thread),
thread_list.end());
}
void Scheduler::ScheduleThread(Thread* thread, u32 priority) {
ASSERT(thread->status == THREADSTATUS_READY);
ready_queue.push_back(priority, thread);
}
void Scheduler::UnscheduleThread(Thread* thread, u32 priority) {
ASSERT(thread->status == THREADSTATUS_READY);
ready_queue.remove(priority, thread);
}
void Scheduler::SetThreadPriority(Thread* thread, u32 priority) {
// If thread was ready, adjust queues
if (thread->status == THREADSTATUS_READY)
ready_queue.move(thread, thread->current_priority, priority);
else
ready_queue.prepare(priority);
}
} // namespace Kernel

@ -0,0 +1,73 @@
// Copyright 2018 yuzu emulator team
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <vector>
#include "common/common_types.h"
#include "common/thread_queue_list.h"
#include "core/arm/arm_interface.h"
#include "core/hle/kernel/thread.h"
namespace Kernel {
class Scheduler final {
public:
explicit Scheduler(ARM_Interface* cpu_core);
~Scheduler();
/// Returns whether there are any threads that are ready to run.
bool HaveReadyThreads();
/// Reschedules to the next available thread (call after current thread is suspended)
void Reschedule();
/// Gets the current running thread
Thread* GetCurrentThread() const;
/// Adds a new thread to the scheduler
void AddThread(SharedPtr<Thread> thread, u32 priority);
/// Removes a thread from the scheduler
void RemoveThread(Thread* thread);
/// Schedules a thread that has become "ready"
void ScheduleThread(Thread* thread, u32 priority);
/// Unschedules a thread that was already scheduled
void UnscheduleThread(Thread* thread, u32 priority);
/// Sets the priority of a thread in the scheduler
void SetThreadPriority(Thread* thread, u32 priority);
/// Returns a list of all threads managed by the scheduler
const std::vector<SharedPtr<Thread>>& GetThreadList() const {
return thread_list;
}
private:
/**
* Pops and returns the next thread from the thread queue
* @return A pointer to the next ready thread
*/
Thread* PopNextReadyThread();
/**
* Switches the CPU's active thread context to that of the specified thread
* @param new_thread The thread to switch to
*/
void SwitchContext(Thread* new_thread);
/// Lists all thread ids that aren't deleted/etc.
std::vector<SharedPtr<Thread>> thread_list;
/// Lists only ready thread ids.
Common::ThreadQueueList<Thread*, THREADPRIO_LOWEST + 1> ready_queue;
SharedPtr<Thread> current_thread = nullptr;
ARM_Interface* cpu_core;
};
} // namespace Kernel

@ -483,7 +483,7 @@ static void ExitProcess() {
g_current_process->status = ProcessStatus::Exited;
// Stop all the process threads that are currently waiting for objects.
auto& thread_list = GetThreadList();
auto& thread_list = Core::System::GetInstance().Scheduler().GetThreadList();
for (auto& thread : thread_list) {
if (thread->owner_process != g_current_process)
continue;
@ -585,7 +585,7 @@ static void SleepThread(s64 nanoseconds) {
// Don't attempt to yield execution if there are no available threads to run,
// this way we avoid a useless reschedule to the idle thread.
if (nanoseconds == 0 && !HaveReadyThreads())
if (nanoseconds == 0 && !Core::System::GetInstance().Scheduler().HaveReadyThreads())
return;
// Sleep current thread and check for next thread to schedule

@ -41,14 +41,6 @@ void Thread::Acquire(Thread* thread) {
// us to simply use a pool index or similar.
static Kernel::HandleTable wakeup_callback_handle_table;
// Lists all thread ids that aren't deleted/etc.
static std::vector<SharedPtr<Thread>> thread_list;
// Lists only ready thread ids.
static Common::ThreadQueueList<Thread*, THREADPRIO_LOWEST + 1> ready_queue;
static SharedPtr<Thread> current_thread;
// The first available thread id at startup
static u32 next_thread_id;
@ -63,10 +55,6 @@ inline static u32 const NewThreadId() {
Thread::Thread() {}
Thread::~Thread() {}
Thread* GetCurrentThread() {
return current_thread.get();
}
/**
* Check if the specified thread is waiting on the specified address to be arbitrated
* @param thread The thread to test
@ -86,7 +74,7 @@ void Thread::Stop() {
// Clean up thread from ready queue
// This is only needed when the thread is termintated forcefully (SVC TerminateProcess)
if (status == THREADSTATUS_READY) {
ready_queue.remove(current_priority, this);
Core::System::GetInstance().Scheduler().UnscheduleThread(this, current_priority);
}
status = THREADSTATUS_DEAD;
@ -109,112 +97,6 @@ void Thread::Stop() {
Kernel::g_current_process->tls_slots[tls_page].reset(tls_slot);
}
Thread* ArbitrateHighestPriorityThread(u32 address) {
Thread* highest_priority_thread = nullptr;
u32 priority = THREADPRIO_LOWEST;
// Iterate through threads, find highest priority thread that is waiting to be arbitrated...
for (auto& thread : thread_list) {
if (!CheckWait_AddressArbiter(thread.get(), address))
continue;
if (thread == nullptr)
continue;
if (thread->current_priority <= priority) {
highest_priority_thread = thread.get();
priority = thread->current_priority;
}
}
// If a thread was arbitrated, resume it
if (nullptr != highest_priority_thread) {
highest_priority_thread->ResumeFromWait();
}
return highest_priority_thread;
}
void ArbitrateAllThreads(u32 address) {
// Resume all threads found to be waiting on the address
for (auto& thread : thread_list) {
if (CheckWait_AddressArbiter(thread.get(), address))
thread->ResumeFromWait();
}
}
/**
* Switches the CPU's active thread context to that of the specified thread
* @param new_thread The thread to switch to
*/
static void SwitchContext(Thread* new_thread) {
Thread* previous_thread = GetCurrentThread();
// Save context for previous thread
if (previous_thread) {
previous_thread->last_running_ticks = CoreTiming::GetTicks();
Core::CPU().SaveContext(previous_thread->context);
if (previous_thread->status == THREADSTATUS_RUNNING) {
// This is only the case when a reschedule is triggered without the current thread
// yielding execution (i.e. an event triggered, system core time-sliced, etc)
ready_queue.push_front(previous_thread->current_priority, previous_thread);
previous_thread->status = THREADSTATUS_READY;
}
}
// Load context of new thread
if (new_thread) {
ASSERT_MSG(new_thread->status == THREADSTATUS_READY,
"Thread must be ready to become running.");
// Cancel any outstanding wakeup events for this thread
CoreTiming::UnscheduleEvent(ThreadWakeupEventType, new_thread->callback_handle);
auto previous_process = Kernel::g_current_process;
current_thread = new_thread;
ready_queue.remove(new_thread->current_priority, new_thread);
new_thread->status = THREADSTATUS_RUNNING;
if (previous_process != current_thread->owner_process) {
Kernel::g_current_process = current_thread->owner_process;
SetCurrentPageTable(&Kernel::g_current_process->vm_manager.page_table);
}
Core::CPU().LoadContext(new_thread->context);
Core::CPU().SetTlsAddress(new_thread->GetTLSAddress());
} else {
current_thread = nullptr;
// Note: We do not reset the current process and current page table when idling because
// technically we haven't changed processes, our threads are just paused.
}
}
/**
* Pops and returns the next thread from the thread queue
* @return A pointer to the next ready thread
*/
static Thread* PopNextReadyThread() {
Thread* next;
Thread* thread = GetCurrentThread();
if (thread && thread->status == THREADSTATUS_RUNNING) {
// We have to do better than the current thread.
// This call returns null when that's not possible.
next = ready_queue.pop_first_better(thread->current_priority);
if (!next) {
// Otherwise just keep going with the current thread
next = thread;
}
} else {
next = ready_queue.pop_first();
}
return next;
}
void WaitCurrentThread_Sleep() {
Thread* thread = GetCurrentThread();
thread->status = THREADSTATUS_WAIT_SLEEP;
@ -229,8 +111,7 @@ void WaitCurrentThread_ArbitrateAddress(VAddr wait_address) {
void ExitCurrentThread() {
Thread* thread = GetCurrentThread();
thread->Stop();
thread_list.erase(std::remove(thread_list.begin(), thread_list.end(), thread),
thread_list.end());
Core::System::GetInstance().Scheduler().RemoveThread(thread);
}
/**
@ -308,31 +189,11 @@ void Thread::ResumeFromWait() {
wakeup_callback = nullptr;
ready_queue.push_back(current_priority, this);
status = THREADSTATUS_READY;
Core::System::GetInstance().Scheduler().ScheduleThread(this, current_priority);
Core::System::GetInstance().PrepareReschedule();
}
/**
* Prints the thread queue for debugging purposes
*/
static void DebugThreadQueue() {
Thread* thread = GetCurrentThread();
if (!thread) {
LOG_DEBUG(Kernel, "Current: NO CURRENT THREAD");
} else {
LOG_DEBUG(Kernel, "0x%02X %u (current)", thread->current_priority,
GetCurrentThread()->GetObjectId());
}
for (auto& t : thread_list) {
u32 priority = ready_queue.contains(t.get());
if (priority != -1) {
LOG_DEBUG(Kernel, "0x%02X %u", priority, t->GetObjectId());
}
}
}
/**
* Finds a free location for the TLS section of a thread.
* @param tls_slots The TLS page array of the thread's owner process.
@ -400,8 +261,7 @@ ResultVal<SharedPtr<Thread>> Thread::Create(std::string name, VAddr entry_point,
SharedPtr<Thread> thread(new Thread);
thread_list.push_back(thread);
ready_queue.prepare(priority);
Core::System::GetInstance().Scheduler().AddThread(thread, priority);
thread->thread_id = NewThreadId();
thread->status = THREADSTATUS_DORMANT;
@ -472,12 +332,7 @@ ResultVal<SharedPtr<Thread>> Thread::Create(std::string name, VAddr entry_point,
void Thread::SetPriority(u32 priority) {
ASSERT_MSG(priority <= THREADPRIO_LOWEST && priority >= THREADPRIO_HIGHEST,
"Invalid priority value.");
// If thread was ready, adjust queues
if (status == THREADSTATUS_READY)
ready_queue.move(this, current_priority, priority);
else
ready_queue.prepare(priority);
Core::System::GetInstance().Scheduler().SetThreadPriority(this, priority);
nominal_priority = current_priority = priority;
}
@ -491,11 +346,7 @@ void Thread::UpdatePriority() {
}
void Thread::BoostPriority(u32 priority) {
// If thread was ready, adjust queues
if (status == THREADSTATUS_READY)
ready_queue.move(this, current_priority, priority);
else
ready_queue.prepare(priority);
Core::System::GetInstance().Scheduler().SetThreadPriority(this, priority);
current_priority = priority;
}
@ -521,25 +372,6 @@ SharedPtr<Thread> SetupMainThread(VAddr entry_point, u32 priority,
return thread;
}
bool HaveReadyThreads() {
return ready_queue.get_first() != nullptr;
}
void Reschedule() {
Thread* cur = GetCurrentThread();
Thread* next = PopNextReadyThread();
if (cur && next) {
LOG_TRACE(Kernel, "context switch %u -> %u", cur->GetObjectId(), next->GetObjectId());
} else if (cur) {
LOG_TRACE(Kernel, "context switch %u -> idle", cur->GetObjectId());
} else if (next) {
LOG_TRACE(Kernel, "context switch idle -> %u", next->GetObjectId());
}
SwitchContext(next);
}
void Thread::SetWaitSynchronizationResult(ResultCode result) {
context.cpu_registers[0] = result.raw;
}
@ -562,25 +394,18 @@ VAddr Thread::GetCommandBufferAddress() const {
////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Gets the current thread
*/
Thread* GetCurrentThread() {
return Core::System::GetInstance().Scheduler().GetCurrentThread();
}
void ThreadingInit() {
ThreadWakeupEventType = CoreTiming::RegisterEvent("ThreadWakeupCallback", ThreadWakeupCallback);
current_thread = nullptr;
next_thread_id = 1;
}
void ThreadingShutdown() {
current_thread = nullptr;
for (auto& t : thread_list) {
t->Stop();
}
thread_list.clear();
ready_queue.clear();
}
const std::vector<SharedPtr<Thread>>& GetThreadList() {
return thread_list;
}
void ThreadingShutdown() {}
} // namespace Kernel

@ -249,28 +249,6 @@ private:
SharedPtr<Thread> SetupMainThread(VAddr entry_point, u32 priority,
SharedPtr<Process> owner_process);
/**
* Returns whether there are any threads that are ready to run.
*/
bool HaveReadyThreads();
/**
* Reschedules to the next available thread (call after current thread is suspended)
*/
void Reschedule();
/**
* Arbitrate the highest priority thread that is waiting
* @param address The address for which waiting threads should be arbitrated
*/
Thread* ArbitrateHighestPriorityThread(VAddr address);
/**
* Arbitrate all threads currently waiting.
* @param address The address for which waiting threads should be arbitrated
*/
void ArbitrateAllThreads(VAddr address);
/**
* Gets the current thread
*/
@ -302,9 +280,4 @@ void ThreadingInit();
*/
void ThreadingShutdown();
/**
* Get a const reference to the thread list for debug use
*/
const std::vector<SharedPtr<Thread>>& GetThreadList();
} // namespace Kernel

@ -5,6 +5,7 @@
#include "yuzu/debugger/wait_tree.h"
#include "yuzu/util/util.h"
#include "core/core.h"
#include "core/hle/kernel/condition_variable.h"
#include "core/hle/kernel/event.h"
#include "core/hle/kernel/mutex.h"
@ -50,7 +51,7 @@ std::size_t WaitTreeItem::Row() const {
}
std::vector<std::unique_ptr<WaitTreeThread>> WaitTreeItem::MakeThreadItemList() {
const auto& threads = Kernel::GetThreadList();
const auto& threads = Core::System::GetInstance().Scheduler().GetThreadList();
std::vector<std::unique_ptr<WaitTreeThread>> item_list;
item_list.reserve(threads.size());
for (std::size_t i = 0; i < threads.size(); ++i) {

Loading…
Cancel
Save