vk_texture_cache: Implement generic texture cache on Vulkan

It currently ignores PBO linearizations since these should be dropped as
soon as possible on OpenGL.
pull/8/head
ReinUsesLisp 5 years ago
parent 2b2712fa95
commit 09e17fbb0f

@ -190,8 +190,11 @@ if (ENABLE_VULKAN)
renderer_vulkan/vk_stream_buffer.h
renderer_vulkan/vk_swapchain.cpp
renderer_vulkan/vk_swapchain.h
renderer_vulkan/vk_texture_cache.cpp
renderer_vulkan/vk_texture_cache.h
renderer_vulkan/vk_update_descriptor.cpp
renderer_vulkan/vk_update_descriptor.h)
renderer_vulkan/vk_update_descriptor.h
)
target_include_directories(video_core PRIVATE sirit ../../externals/Vulkan-Headers/include)
target_compile_definitions(video_core PRIVATE HAS_VULKAN)

@ -13,6 +13,7 @@
#include "video_core/renderer_vulkan/declarations.h"
#include "video_core/renderer_vulkan/vk_memory_manager.h"
#include "video_core/renderer_vulkan/vk_resource_manager.h"
namespace Vulkan {

@ -0,0 +1,484 @@
// Copyright 2019 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <algorithm>
#include <array>
#include <cstddef>
#include <cstring>
#include <memory>
#include <variant>
#include <vector>
#include "common/alignment.h"
#include "common/assert.h"
#include "common/common_types.h"
#include "core/core.h"
#include "core/memory.h"
#include "video_core/engines/maxwell_3d.h"
#include "video_core/morton.h"
#include "video_core/renderer_vulkan/declarations.h"
#include "video_core/renderer_vulkan/maxwell_to_vk.h"
#include "video_core/renderer_vulkan/vk_device.h"
#include "video_core/renderer_vulkan/vk_memory_manager.h"
#include "video_core/renderer_vulkan/vk_rasterizer.h"
#include "video_core/renderer_vulkan/vk_staging_buffer_pool.h"
#include "video_core/renderer_vulkan/vk_texture_cache.h"
#include "video_core/surface.h"
#include "video_core/textures/convert.h"
namespace Vulkan {
using VideoCore::MortonSwizzle;
using VideoCore::MortonSwizzleMode;
using Tegra::Texture::SwizzleSource;
using VideoCore::Surface::PixelFormat;
using VideoCore::Surface::SurfaceCompression;
using VideoCore::Surface::SurfaceTarget;
namespace {
vk::ImageType SurfaceTargetToImage(SurfaceTarget target) {
switch (target) {
case SurfaceTarget::Texture1D:
case SurfaceTarget::Texture1DArray:
return vk::ImageType::e1D;
case SurfaceTarget::Texture2D:
case SurfaceTarget::Texture2DArray:
case SurfaceTarget::TextureCubemap:
case SurfaceTarget::TextureCubeArray:
return vk::ImageType::e2D;
case SurfaceTarget::Texture3D:
return vk::ImageType::e3D;
}
UNREACHABLE_MSG("Unknown texture target={}", static_cast<u32>(target));
return {};
}
vk::ImageAspectFlags PixelFormatToImageAspect(PixelFormat pixel_format) {
if (pixel_format < PixelFormat::MaxColorFormat) {
return vk::ImageAspectFlagBits::eColor;
} else if (pixel_format < PixelFormat::MaxDepthFormat) {
return vk::ImageAspectFlagBits::eDepth;
} else if (pixel_format < PixelFormat::MaxDepthStencilFormat) {
return vk::ImageAspectFlagBits::eDepth | vk::ImageAspectFlagBits::eStencil;
} else {
UNREACHABLE_MSG("Invalid pixel format={}", static_cast<u32>(pixel_format));
return vk::ImageAspectFlagBits::eColor;
}
}
vk::ImageViewType GetImageViewType(SurfaceTarget target) {
switch (target) {
case SurfaceTarget::Texture1D:
return vk::ImageViewType::e1D;
case SurfaceTarget::Texture2D:
return vk::ImageViewType::e2D;
case SurfaceTarget::Texture3D:
return vk::ImageViewType::e3D;
case SurfaceTarget::Texture1DArray:
return vk::ImageViewType::e1DArray;
case SurfaceTarget::Texture2DArray:
return vk::ImageViewType::e2DArray;
case SurfaceTarget::TextureCubemap:
return vk::ImageViewType::eCube;
case SurfaceTarget::TextureCubeArray:
return vk::ImageViewType::eCubeArray;
case SurfaceTarget::TextureBuffer:
break;
}
UNREACHABLE();
return {};
}
UniqueBuffer CreateBuffer(const VKDevice& device, const SurfaceParams& params) {
// TODO(Rodrigo): Move texture buffer creation to the buffer cache
const vk::BufferCreateInfo buffer_ci({}, params.GetHostSizeInBytes(),
vk::BufferUsageFlagBits::eUniformTexelBuffer |
vk::BufferUsageFlagBits::eTransferSrc |
vk::BufferUsageFlagBits::eTransferDst,
vk::SharingMode::eExclusive, 0, nullptr);
const auto dev = device.GetLogical();
const auto& dld = device.GetDispatchLoader();
return dev.createBufferUnique(buffer_ci, nullptr, dld);
}
vk::BufferViewCreateInfo GenerateBufferViewCreateInfo(const VKDevice& device,
const SurfaceParams& params,
vk::Buffer buffer) {
ASSERT(params.IsBuffer());
const auto format =
MaxwellToVK::SurfaceFormat(device, FormatType::Buffer, params.pixel_format).format;
return vk::BufferViewCreateInfo({}, buffer, format, 0, params.GetHostSizeInBytes());
}
vk::ImageCreateInfo GenerateImageCreateInfo(const VKDevice& device, const SurfaceParams& params) {
constexpr auto sample_count = vk::SampleCountFlagBits::e1;
constexpr auto tiling = vk::ImageTiling::eOptimal;
ASSERT(!params.IsBuffer());
const auto [format, attachable, storage] =
MaxwellToVK::SurfaceFormat(device, FormatType::Optimal, params.pixel_format);
auto image_usage = vk::ImageUsageFlagBits::eSampled | vk::ImageUsageFlagBits::eTransferDst |
vk::ImageUsageFlagBits::eTransferSrc;
if (attachable) {
image_usage |= params.IsPixelFormatZeta() ? vk::ImageUsageFlagBits::eDepthStencilAttachment
: vk::ImageUsageFlagBits::eColorAttachment;
}
if (storage) {
image_usage |= vk::ImageUsageFlagBits::eStorage;
}
vk::ImageCreateFlags flags;
vk::Extent3D extent;
switch (params.target) {
case SurfaceTarget::TextureCubemap:
case SurfaceTarget::TextureCubeArray:
flags |= vk::ImageCreateFlagBits::eCubeCompatible;
[[fallthrough]];
case SurfaceTarget::Texture1D:
case SurfaceTarget::Texture1DArray:
case SurfaceTarget::Texture2D:
case SurfaceTarget::Texture2DArray:
extent = vk::Extent3D(params.width, params.height, 1);
break;
case SurfaceTarget::Texture3D:
extent = vk::Extent3D(params.width, params.height, params.depth);
break;
case SurfaceTarget::TextureBuffer:
UNREACHABLE();
}
return vk::ImageCreateInfo(flags, SurfaceTargetToImage(params.target), format, extent,
params.num_levels, static_cast<u32>(params.GetNumLayers()),
sample_count, tiling, image_usage, vk::SharingMode::eExclusive, 0,
nullptr, vk::ImageLayout::eUndefined);
}
} // Anonymous namespace
CachedSurface::CachedSurface(Core::System& system, const VKDevice& device,
VKResourceManager& resource_manager, VKMemoryManager& memory_manager,
VKScheduler& scheduler, VKStagingBufferPool& staging_pool,
GPUVAddr gpu_addr, const SurfaceParams& params)
: SurfaceBase<View>{gpu_addr, params}, system{system}, device{device},
resource_manager{resource_manager}, memory_manager{memory_manager}, scheduler{scheduler},
staging_pool{staging_pool} {
if (params.IsBuffer()) {
buffer = CreateBuffer(device, params);
commit = memory_manager.Commit(*buffer, false);
const auto buffer_view_ci = GenerateBufferViewCreateInfo(device, params, *buffer);
format = buffer_view_ci.format;
const auto dev = device.GetLogical();
const auto& dld = device.GetDispatchLoader();
buffer_view = dev.createBufferViewUnique(buffer_view_ci, nullptr, dld);
} else {
const auto image_ci = GenerateImageCreateInfo(device, params);
format = image_ci.format;
image.emplace(device, scheduler, image_ci, PixelFormatToImageAspect(params.pixel_format));
commit = memory_manager.Commit(image->GetHandle(), false);
}
// TODO(Rodrigo): Move this to a virtual function.
main_view = CreateViewInner(
ViewParams(params.target, 0, static_cast<u32>(params.GetNumLayers()), 0, params.num_levels),
true);
}
CachedSurface::~CachedSurface() = default;
void CachedSurface::UploadTexture(const std::vector<u8>& staging_buffer) {
// To upload data we have to be outside of a renderpass
scheduler.RequestOutsideRenderPassOperationContext();
if (params.IsBuffer()) {
UploadBuffer(staging_buffer);
} else {
UploadImage(staging_buffer);
}
}
void CachedSurface::DownloadTexture(std::vector<u8>& staging_buffer) {
UNIMPLEMENTED_IF(params.IsBuffer());
if (params.pixel_format == VideoCore::Surface::PixelFormat::A1B5G5R5U) {
LOG_WARNING(Render_Vulkan, "A1B5G5R5 flushing is stubbed");
}
// We can't copy images to buffers inside a renderpass
scheduler.RequestOutsideRenderPassOperationContext();
FullTransition(vk::PipelineStageFlagBits::eTransfer, vk::AccessFlagBits::eTransferRead,
vk::ImageLayout::eTransferSrcOptimal);
const auto& buffer = staging_pool.GetUnusedBuffer(host_memory_size, true);
// TODO(Rodrigo): Do this in a single copy
for (u32 level = 0; level < params.num_levels; ++level) {
scheduler.Record([image = image->GetHandle(), buffer = *buffer.handle,
copy = GetBufferImageCopy(level)](auto cmdbuf, auto& dld) {
cmdbuf.copyImageToBuffer(image, vk::ImageLayout::eTransferSrcOptimal, buffer, {copy},
dld);
});
}
scheduler.Finish();
// TODO(Rodrigo): Use an intern buffer for staging buffers and avoid this unnecesary memcpy.
std::memcpy(staging_buffer.data(), buffer.commit->Map(host_memory_size), host_memory_size);
}
void CachedSurface::DecorateSurfaceName() {
// TODO(Rodrigo): Add name decorations
}
View CachedSurface::CreateView(const ViewParams& params) {
return CreateViewInner(params, false);
}
View CachedSurface::CreateViewInner(const ViewParams& params, bool is_proxy) {
auto view = std::make_shared<CachedSurfaceView>(device, *this, params, is_proxy);
views[params] = view;
// TODO(Rodrigo): Add name decorations
return view;
}
void CachedSurface::UploadBuffer(const std::vector<u8>& staging_buffer) {
const auto& src_buffer = staging_pool.GetUnusedBuffer(host_memory_size, true);
std::memcpy(src_buffer.commit->Map(host_memory_size), staging_buffer.data(), host_memory_size);
scheduler.Record([src_buffer = *src_buffer.handle, dst_buffer = *buffer,
size = params.GetHostSizeInBytes()](auto cmdbuf, auto& dld) {
const vk::BufferCopy copy(0, 0, size);
cmdbuf.copyBuffer(src_buffer, dst_buffer, {copy}, dld);
cmdbuf.pipelineBarrier(
vk::PipelineStageFlagBits::eTransfer, vk::PipelineStageFlagBits::eVertexShader, {}, {},
{vk::BufferMemoryBarrier(vk::AccessFlagBits::eTransferWrite,
vk::AccessFlagBits::eShaderRead, 0, 0, dst_buffer, 0, size)},
{}, dld);
});
}
void CachedSurface::UploadImage(const std::vector<u8>& staging_buffer) {
const auto& src_buffer = staging_pool.GetUnusedBuffer(host_memory_size, true);
std::memcpy(src_buffer.commit->Map(host_memory_size), staging_buffer.data(), host_memory_size);
FullTransition(vk::PipelineStageFlagBits::eTransfer, vk::AccessFlagBits::eTransferWrite,
vk::ImageLayout::eTransferDstOptimal);
for (u32 level = 0; level < params.num_levels; ++level) {
vk::BufferImageCopy copy = GetBufferImageCopy(level);
const auto& dld = device.GetDispatchLoader();
if (image->GetAspectMask() ==
(vk::ImageAspectFlagBits::eDepth | vk::ImageAspectFlagBits::eStencil)) {
vk::BufferImageCopy depth = copy;
vk::BufferImageCopy stencil = copy;
depth.imageSubresource.aspectMask = vk::ImageAspectFlagBits::eDepth;
stencil.imageSubresource.aspectMask = vk::ImageAspectFlagBits::eStencil;
scheduler.Record([buffer = *src_buffer.handle, image = image->GetHandle(), depth,
stencil](auto cmdbuf, auto& dld) {
cmdbuf.copyBufferToImage(buffer, image, vk::ImageLayout::eTransferDstOptimal,
{depth, stencil}, dld);
});
} else {
scheduler.Record([buffer = *src_buffer.handle, image = image->GetHandle(),
copy](auto cmdbuf, auto& dld) {
cmdbuf.copyBufferToImage(buffer, image, vk::ImageLayout::eTransferDstOptimal,
{copy}, dld);
});
}
}
}
vk::BufferImageCopy CachedSurface::GetBufferImageCopy(u32 level) const {
const u32 vk_depth = params.target == SurfaceTarget::Texture3D ? params.GetMipDepth(level) : 1;
const auto compression_type = params.GetCompressionType();
const std::size_t mip_offset = compression_type == SurfaceCompression::Converted
? params.GetConvertedMipmapOffset(level)
: params.GetHostMipmapLevelOffset(level);
return vk::BufferImageCopy(
mip_offset, 0, 0,
{image->GetAspectMask(), level, 0, static_cast<u32>(params.GetNumLayers())}, {0, 0, 0},
{params.GetMipWidth(level), params.GetMipHeight(level), vk_depth});
}
vk::ImageSubresourceRange CachedSurface::GetImageSubresourceRange() const {
return {image->GetAspectMask(), 0, params.num_levels, 0,
static_cast<u32>(params.GetNumLayers())};
}
CachedSurfaceView::CachedSurfaceView(const VKDevice& device, CachedSurface& surface,
const ViewParams& params, bool is_proxy)
: VideoCommon::ViewBase{params}, params{surface.GetSurfaceParams()},
image{surface.GetImageHandle()}, buffer_view{surface.GetBufferViewHandle()},
aspect_mask{surface.GetAspectMask()}, device{device}, surface{surface},
base_layer{params.base_layer}, num_layers{params.num_layers}, base_level{params.base_level},
num_levels{params.num_levels} {
if (image) {
image_view_type = GetImageViewType(params.target);
}
}
CachedSurfaceView::~CachedSurfaceView() = default;
vk::ImageView CachedSurfaceView::GetHandle(SwizzleSource x_source, SwizzleSource y_source,
SwizzleSource z_source, SwizzleSource w_source) {
const u32 swizzle = EncodeSwizzle(x_source, y_source, z_source, w_source);
if (last_image_view && last_swizzle == swizzle) {
return last_image_view;
}
last_swizzle = swizzle;
const auto [entry, is_cache_miss] = view_cache.try_emplace(swizzle);
auto& image_view = entry->second;
if (!is_cache_miss) {
return last_image_view = *image_view;
}
auto swizzle_x = MaxwellToVK::SwizzleSource(x_source);
auto swizzle_y = MaxwellToVK::SwizzleSource(y_source);
auto swizzle_z = MaxwellToVK::SwizzleSource(z_source);
auto swizzle_w = MaxwellToVK::SwizzleSource(w_source);
if (params.pixel_format == VideoCore::Surface::PixelFormat::A1B5G5R5U) {
// A1B5G5R5 is implemented as A1R5G5B5, we have to change the swizzle here.
std::swap(swizzle_x, swizzle_z);
}
// Games can sample depth or stencil values on textures. This is decided by the swizzle value on
// hardware. To emulate this on Vulkan we specify it in the aspect.
vk::ImageAspectFlags aspect = aspect_mask;
if (aspect == (vk::ImageAspectFlagBits::eDepth | vk::ImageAspectFlagBits::eStencil)) {
UNIMPLEMENTED_IF(x_source != SwizzleSource::R && x_source != SwizzleSource::G);
const bool is_first = x_source == SwizzleSource::R;
switch (params.pixel_format) {
case VideoCore::Surface::PixelFormat::Z24S8:
case VideoCore::Surface::PixelFormat::Z32FS8:
aspect = is_first ? vk::ImageAspectFlagBits::eDepth : vk::ImageAspectFlagBits::eStencil;
break;
case VideoCore::Surface::PixelFormat::S8Z24:
aspect = is_first ? vk::ImageAspectFlagBits::eStencil : vk::ImageAspectFlagBits::eDepth;
break;
default:
aspect = vk::ImageAspectFlagBits::eDepth;
UNIMPLEMENTED();
}
// Vulkan doesn't seem to understand swizzling of a depth stencil image, use identity
swizzle_x = vk::ComponentSwizzle::eR;
swizzle_y = vk::ComponentSwizzle::eG;
swizzle_z = vk::ComponentSwizzle::eB;
swizzle_w = vk::ComponentSwizzle::eA;
}
const vk::ImageViewCreateInfo image_view_ci(
{}, surface.GetImageHandle(), image_view_type, surface.GetImage().GetFormat(),
{swizzle_x, swizzle_y, swizzle_z, swizzle_w},
{aspect, base_level, num_levels, base_layer, num_layers});
const auto dev = device.GetLogical();
image_view = dev.createImageViewUnique(image_view_ci, nullptr, device.GetDispatchLoader());
return last_image_view = *image_view;
}
bool CachedSurfaceView::IsOverlapping(const View& rhs) const {
// TODO(Rodrigo): Also test for layer and mip level overlaps.
return &surface == &rhs->surface;
}
VKTextureCache::VKTextureCache(Core::System& system, VideoCore::RasterizerInterface& rasterizer,
const VKDevice& device, VKResourceManager& resource_manager,
VKMemoryManager& memory_manager, VKScheduler& scheduler,
VKStagingBufferPool& staging_pool)
: TextureCache(system, rasterizer), device{device}, resource_manager{resource_manager},
memory_manager{memory_manager}, scheduler{scheduler}, staging_pool{staging_pool} {}
VKTextureCache::~VKTextureCache() = default;
Surface VKTextureCache::CreateSurface(GPUVAddr gpu_addr, const SurfaceParams& params) {
return std::make_shared<CachedSurface>(system, device, resource_manager, memory_manager,
scheduler, staging_pool, gpu_addr, params);
}
void VKTextureCache::ImageCopy(Surface& src_surface, Surface& dst_surface,
const VideoCommon::CopyParams& copy_params) {
const bool src_3d = src_surface->GetSurfaceParams().target == SurfaceTarget::Texture3D;
const bool dst_3d = dst_surface->GetSurfaceParams().target == SurfaceTarget::Texture3D;
UNIMPLEMENTED_IF(src_3d);
// The texture cache handles depth in OpenGL terms, we have to handle it as subresource and
// dimension respectively.
const u32 dst_base_layer = dst_3d ? 0 : copy_params.dest_z;
const u32 dst_offset_z = dst_3d ? copy_params.dest_z : 0;
const u32 extent_z = dst_3d ? copy_params.depth : 1;
const u32 num_layers = dst_3d ? 1 : copy_params.depth;
// We can't copy inside a renderpass
scheduler.RequestOutsideRenderPassOperationContext();
src_surface->Transition(copy_params.source_z, copy_params.depth, copy_params.source_level, 1,
vk::PipelineStageFlagBits::eTransfer, vk::AccessFlagBits::eTransferRead,
vk::ImageLayout::eTransferSrcOptimal);
dst_surface->Transition(
dst_base_layer, num_layers, copy_params.dest_level, 1, vk::PipelineStageFlagBits::eTransfer,
vk::AccessFlagBits::eTransferWrite, vk::ImageLayout::eTransferDstOptimal);
const auto& dld{device.GetDispatchLoader()};
const vk::ImageSubresourceLayers src_subresource(
src_surface->GetAspectMask(), copy_params.source_level, copy_params.source_z, num_layers);
const vk::ImageSubresourceLayers dst_subresource(
dst_surface->GetAspectMask(), copy_params.dest_level, dst_base_layer, num_layers);
const vk::Offset3D src_offset(copy_params.source_x, copy_params.source_y, 0);
const vk::Offset3D dst_offset(copy_params.dest_x, copy_params.dest_y, dst_offset_z);
const vk::Extent3D extent(copy_params.width, copy_params.height, extent_z);
const vk::ImageCopy copy(src_subresource, src_offset, dst_subresource, dst_offset, extent);
const vk::Image src_image = src_surface->GetImageHandle();
const vk::Image dst_image = dst_surface->GetImageHandle();
scheduler.Record([src_image, dst_image, copy](auto cmdbuf, auto& dld) {
cmdbuf.copyImage(src_image, vk::ImageLayout::eTransferSrcOptimal, dst_image,
vk::ImageLayout::eTransferDstOptimal, {copy}, dld);
});
}
void VKTextureCache::ImageBlit(View& src_view, View& dst_view,
const Tegra::Engines::Fermi2D::Config& copy_config) {
// We can't blit inside a renderpass
scheduler.RequestOutsideRenderPassOperationContext();
src_view->Transition(vk::ImageLayout::eTransferSrcOptimal, vk::PipelineStageFlagBits::eTransfer,
vk::AccessFlagBits::eTransferRead);
dst_view->Transition(vk::ImageLayout::eTransferDstOptimal, vk::PipelineStageFlagBits::eTransfer,
vk::AccessFlagBits::eTransferWrite);
const auto& cfg = copy_config;
const auto src_top_left = vk::Offset3D(cfg.src_rect.left, cfg.src_rect.top, 0);
const auto src_bot_right = vk::Offset3D(cfg.src_rect.right, cfg.src_rect.bottom, 1);
const auto dst_top_left = vk::Offset3D(cfg.dst_rect.left, cfg.dst_rect.top, 0);
const auto dst_bot_right = vk::Offset3D(cfg.dst_rect.right, cfg.dst_rect.bottom, 1);
const vk::ImageBlit blit(src_view->GetImageSubresourceLayers(), {src_top_left, src_bot_right},
dst_view->GetImageSubresourceLayers(), {dst_top_left, dst_bot_right});
const bool is_linear = copy_config.filter == Tegra::Engines::Fermi2D::Filter::Linear;
const auto& dld{device.GetDispatchLoader()};
scheduler.Record([src_image = src_view->GetImage(), dst_image = dst_view->GetImage(), blit,
is_linear](auto cmdbuf, auto& dld) {
cmdbuf.blitImage(src_image, vk::ImageLayout::eTransferSrcOptimal, dst_image,
vk::ImageLayout::eTransferDstOptimal, {blit},
is_linear ? vk::Filter::eLinear : vk::Filter::eNearest, dld);
});
}
void VKTextureCache::BufferCopy(Surface& src_surface, Surface& dst_surface) {
// Currently unimplemented. PBO copies should be dropped and we should use a render pass to
// convert from color to depth and viceversa.
}
} // namespace Vulkan

@ -0,0 +1,244 @@
// Copyright 2019 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <memory>
#include <tuple>
#include <unordered_map>
#include <boost/functional/hash.hpp>
#include <boost/icl/interval_map.hpp>
#include "common/assert.h"
#include "common/common_types.h"
#include "common/hash.h"
#include "common/logging/log.h"
#include "common/math_util.h"
#include "video_core/gpu.h"
#include "video_core/rasterizer_cache.h"
#include "video_core/renderer_vulkan/declarations.h"
#include "video_core/renderer_vulkan/vk_image.h"
#include "video_core/renderer_vulkan/vk_memory_manager.h"
#include "video_core/renderer_vulkan/vk_scheduler.h"
#include "video_core/surface.h"
#include "video_core/texture_cache/surface_base.h"
#include "video_core/texture_cache/texture_cache.h"
#include "video_core/textures/decoders.h"
#include "video_core/textures/texture.h"
namespace Core {
class System;
}
namespace VideoCore {
class RasterizerInterface;
}
namespace Vulkan {
class RasterizerVulkan;
class VKDevice;
class VKResourceManager;
class VKScheduler;
class VKStagingBufferPool;
class CachedSurfaceView;
class CachedSurface;
using Surface = std::shared_ptr<CachedSurface>;
using View = std::shared_ptr<CachedSurfaceView>;
using TextureCacheBase = VideoCommon::TextureCache<Surface, View>;
using VideoCommon::SurfaceParams;
using VideoCommon::ViewParams;
class CachedSurface final : public VideoCommon::SurfaceBase<View> {
friend CachedSurfaceView;
public:
explicit CachedSurface(Core::System& system, const VKDevice& device,
VKResourceManager& resource_manager, VKMemoryManager& memory_manager,
VKScheduler& scheduler, VKStagingBufferPool& staging_pool,
GPUVAddr gpu_addr, const SurfaceParams& params);
~CachedSurface();
void UploadTexture(const std::vector<u8>& staging_buffer) override;
void DownloadTexture(std::vector<u8>& staging_buffer) override;
void FullTransition(vk::PipelineStageFlags new_stage_mask, vk::AccessFlags new_access,
vk::ImageLayout new_layout) {
image->Transition(0, static_cast<u32>(params.GetNumLayers()), 0, params.num_levels,
new_stage_mask, new_access, new_layout);
}
void Transition(u32 base_layer, u32 num_layers, u32 base_level, u32 num_levels,
vk::PipelineStageFlags new_stage_mask, vk::AccessFlags new_access,
vk::ImageLayout new_layout) {
image->Transition(base_layer, num_layers, base_level, num_levels, new_stage_mask,
new_access, new_layout);
}
VKImage& GetImage() {
return *image;
}
const VKImage& GetImage() const {
return *image;
}
vk::Image GetImageHandle() const {
return image->GetHandle();
}
vk::ImageAspectFlags GetAspectMask() const {
return image->GetAspectMask();
}
vk::BufferView GetBufferViewHandle() const {
return *buffer_view;
}
protected:
void DecorateSurfaceName();
View CreateView(const ViewParams& params) override;
View CreateViewInner(const ViewParams& params, bool is_proxy);
private:
void UploadBuffer(const std::vector<u8>& staging_buffer);
void UploadImage(const std::vector<u8>& staging_buffer);
vk::BufferImageCopy GetBufferImageCopy(u32 level) const;
vk::ImageSubresourceRange GetImageSubresourceRange() const;
Core::System& system;
const VKDevice& device;
VKResourceManager& resource_manager;
VKMemoryManager& memory_manager;
VKScheduler& scheduler;
VKStagingBufferPool& staging_pool;
std::optional<VKImage> image;
UniqueBuffer buffer;
UniqueBufferView buffer_view;
VKMemoryCommit commit;
vk::Format format;
};
class CachedSurfaceView final : public VideoCommon::ViewBase {
public:
explicit CachedSurfaceView(const VKDevice& device, CachedSurface& surface,
const ViewParams& params, bool is_proxy);
~CachedSurfaceView();
vk::ImageView GetHandle(Tegra::Texture::SwizzleSource x_source,
Tegra::Texture::SwizzleSource y_source,
Tegra::Texture::SwizzleSource z_source,
Tegra::Texture::SwizzleSource w_source);
bool IsOverlapping(const View& rhs) const;
vk::ImageView GetHandle() {
return GetHandle(Tegra::Texture::SwizzleSource::R, Tegra::Texture::SwizzleSource::G,
Tegra::Texture::SwizzleSource::B, Tegra::Texture::SwizzleSource::A);
}
u32 GetWidth() const {
return params.GetMipWidth(base_level);
}
u32 GetHeight() const {
return params.GetMipHeight(base_level);
}
bool IsBufferView() const {
return buffer_view;
}
vk::Image GetImage() const {
return image;
}
vk::BufferView GetBufferView() const {
return buffer_view;
}
vk::ImageSubresourceRange GetImageSubresourceRange() const {
return {aspect_mask, base_level, num_levels, base_layer, num_layers};
}
vk::ImageSubresourceLayers GetImageSubresourceLayers() const {
return {surface.GetAspectMask(), base_level, base_layer, num_layers};
}
void Transition(vk::ImageLayout new_layout, vk::PipelineStageFlags new_stage_mask,
vk::AccessFlags new_access) const {
surface.Transition(base_layer, num_layers, base_level, num_levels, new_stage_mask,
new_access, new_layout);
}
void MarkAsModified(u64 tick) {
surface.MarkAsModified(true, tick);
}
private:
static u32 EncodeSwizzle(Tegra::Texture::SwizzleSource x_source,
Tegra::Texture::SwizzleSource y_source,
Tegra::Texture::SwizzleSource z_source,
Tegra::Texture::SwizzleSource w_source) {
return (static_cast<u32>(x_source) << 24) | (static_cast<u32>(y_source) << 16) |
(static_cast<u32>(z_source) << 8) | static_cast<u32>(w_source);
}
// Store a copy of these values to avoid double dereference when reading them
const SurfaceParams params;
const vk::Image image;
const vk::BufferView buffer_view;
const vk::ImageAspectFlags aspect_mask;
const VKDevice& device;
CachedSurface& surface;
const u32 base_layer;
const u32 num_layers;
const u32 base_level;
const u32 num_levels;
vk::ImageViewType image_view_type{};
vk::ImageView last_image_view;
u32 last_swizzle{};
std::unordered_map<u32, UniqueImageView> view_cache;
};
class VKTextureCache final : public TextureCacheBase {
public:
explicit VKTextureCache(Core::System& system, VideoCore::RasterizerInterface& rasterizer,
const VKDevice& device, VKResourceManager& resource_manager,
VKMemoryManager& memory_manager, VKScheduler& scheduler,
VKStagingBufferPool& staging_pool);
~VKTextureCache();
private:
Surface CreateSurface(GPUVAddr gpu_addr, const SurfaceParams& params) override;
void ImageCopy(Surface& src_surface, Surface& dst_surface,
const VideoCommon::CopyParams& copy_params) override;
void ImageBlit(View& src_view, View& dst_view,
const Tegra::Engines::Fermi2D::Config& copy_config) override;
void BufferCopy(Surface& src_surface, Surface& dst_surface) override;
const VKDevice& device;
VKResourceManager& resource_manager;
VKMemoryManager& memory_manager;
VKScheduler& scheduler;
VKStagingBufferPool& staging_pool;
};
} // namespace Vulkan
Loading…
Cancel
Save