You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
suricata/suricata.yaml

508 lines
15 KiB
YAML

This file contains invisible Unicode characters!

This file contains invisible Unicode characters that may be processed differently from what appears below. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to reveal hidden characters.

%YAML 1.1
---
# Number of packets allowed to be processed simultaneously. Default is a
# conservative 50. a higher number will make sure CPU's/CPU cores will be
# more easily kept busy, but will negatively impact caching.
#
# If you are using the CUDA pattern matcher (b2g_cuda below), different rules
# apply. In that case try something like 4000 or more. This is because the CUDA
# pattern matcher scans many packets in parallel.
#max-pending-packets: 50
# Set the order of alerts bassed on actions
# The default order is pass, drop, reject, alert
action-order:
- pass
- drop
- reject
- alert
# The default logging directory. Any log or output file will be
# placed here if its not specified with a full path name. This can be
# overridden with the -l command line parameter.
default-log-dir: /var/log/suricata
# Configure the type of alert (and other) logging you would like.
outputs:
# a line based alerts log similar to Snort's fast.log
- fast:
enabled: yes
filename: fast.log
# log output for use with Barnyard
- unified-log:
enabled: no
filename: unified.log
# Limit in MB.
#limit: 32
# alert output for use with Barnyard
- unified-alert:
enabled: no
filename: unified.alert
# Limit in MB.
#limit: 32
# alert output for use with Barnyard2
- unified2-alert:
enabled: yes
filename: unified2.alert
# Limit in MB.
#limit: 32
# a line based log of HTTP requests (no alerts)
- http-log:
enabled: yes
filename: http.log
# a full alerts log containing much information for signature writers
# or for investigating suspected false positives.
- alert-debug:
enabled: no
filename: alert-debug.log
# alert output to prelude (http://www.prelude-technologies.com/) only
# available if Suricata has been compiled with --enable-prelude
- alert-prelude:
enabled: no
profile: suricata
defrag:
max-frags: 65535
prealloc: yes
timeout: 60
# You can specify a threshold config file by setting "threshold-file"
# to the path of the threshold config file:
# threshold-file: /etc/suricata/threshold.config
# The detection engine builds internal groups of signatures. The engine
# allow us to specify the profile to use for them, to manage memory on an
# efficient way keeping a good performance. For the profile keyword you
# can use the words "low", "medium", "high" or "custom". If you use custom
# make sure to define the values at "- custom-values" as your convenience.
# Usually you would prefer medium/high/low
detect-engine:
- profile: medium
- custom-values:
toclient_src_groups: 2
toclient_dst_groups: 2
toclient_sp_groups: 2
toclient_dp_groups: 3
toserver_src_groups: 2
toserver_dst_groups: 4
toserver_sp_groups: 2
toserver_dp_groups: 25
# Suricata is multi-threaded. Here the threading can be influenced.
threading:
# On some cpu's/architectures it is beneficial to tie individual threads
# to specific CPU's/CPU cores. In this case all threads are tied to CPU0,
# and each extra CPU/core has one "detect" thread.
#
# On Intel Core2 and Nehalem CPU's enabling this will degrade performance.
#
set_cpu_affinity: no
#
# By default Suricata creates one "detect" thread per available CPU/CPU core.
# This setting allows controlling this behaviour. A ratio setting of 2 will
# create 2 detect threads for each CPU/CPU core. So for a dual core CPU this
# will result in 4 detect threads. If values below 1 are used, less threads
# are created. So on a dual core CPU a setting of 0.5 results in 1 detect
# thread being created. Regardless of the setting at a minimum 1 detect
# thread will always be created.
#
detect_thread_ratio: 1.5
# Select the multi pattern algorithm you want to run for scan/search the
# in the engine. The supported algorithms are b2g, b3g and wumanber.
#
# There is also a CUDA pattern matcher (only available if Suricata was
# compiled with --enable-cuda: b2g_cuda. Make sure to update your
# max-pending-packets setting above as well if you use b2g_cuda.
mpm-algo: b2g
# The memory settings for hash size of these algorithms can vary from lowest
# (2048) - low (4096) - medium (8192) - high (16384) - highest (32768) - max
# (65536). The bloomfilter sizes of these algorithms can vary from low (512) -
# medium (1024) - high (2048).
#
# For B2g/B3g algorithms, there is a support for two different scan/search
# algorithms. For B2g the scan algorithms are B2gScan & B2gScanBNDMq, and
# search algorithms are B2gSearch & B2gSearchBNDMq. For B3g scan algorithms
# are B3gScan & B3gScanBNDMq, and search algorithms are B3gSearch &
# B3gSearchBNDMq.
#
# For B2g the different scan/search algorithms and, hash and bloom
# filter size settings. For B3g the different scan/search algorithms and, hash
# and bloom filter size settings. For wumanber the hash and bloom filter size
# settings.
pattern-matcher:
- b2g:
scan_algo: B2gScanBNDMq
search_algo: B2gSearchBNDMq
hash_size: low
bf_size: medium
- b3g:
scan_algo: B3gScanBNDMq
search_algo: B3gSearchBNDMq
hash_size: low
bf_size: medium
- wumanber:
hash_size: low
bf_size: medium
# Flow settings:
# By default, the reserved memory (memcap) for flows is 32MB. This is the limit
# for flow allocation inside the engine. You can change this value to allow
# more memory usage for flows.
# The hash_size determine the size of the hash used to identify flows inside
# the engine, and by default the value is 65536.
# At the startup, the engine can preallocate a number of flows, to get a better
# performance. The number of flows preallocated is 10000 by default.
# emergency_recovery is the percentage of flows that the engine need to
# prune before unsetting the emergency state. The emergency state is activated
# when the memcap limit is reached, allowing to create new flows, but
# prunning them with the emergency timeouts (they are defined below).
# If the memcap is reached, the engine will try to prune prune_flows
# with the default timeouts. If it doens't find a flow to prune, it will set
# the emergency bit and it will try again with more agressive timeouts.
# If that doesn't work, then it will try to kill the last time seen flows
# not in use.
flow:
memcap: 33554432
hash_size: 65536
prealloc: 10000
emergency_recovery: 30
prune_flows: 5
# Specific timeouts for flows. Here you can specify the timeouts that the
# active flows will wait to transit from the current state to another, on each
# protocol. The value of "new" determine the seconds to wait after a hanshake or
# stream startup before the engine free the data of that flow it doesn't
# change the state to established (usually if we don't receive more packets
# of that flow). The value of "established" is the amount of
# seconds that the engine will wait to free the flow if it spend that amount
# without receiving new packets or closing the connection. "closed" is the
# amount of time to wait after a flow is closed (usually zero).
#
# There's an emergency mode that will become active under attack circumstances,
# making the engine to check flow status faster. This configuration variables
# use the prefix "emergency_" and work similar as the normal ones.
# Some timeouts doesn't apply to all the protocols, like "closed", for udp and
# icmp.
flow-timeouts:
default:
new: 30
established: 300
closed: 0
emergency_new: 10
emergency_established: 100
emergency_closed: 0
tcp:
new: 60
established: 3600
closed: 120
emergency_new: 10
emergency_established: 300
emergency_closed: 20
udp:
new: 30
established: 300
emergency_new: 10
emergency_established: 100
icmp:
new: 30
established: 300
emergency_new: 10
emergency_established: 100
# Stream engine settings.
# stream:
# memcap: 67108864 # 64mb memcap
# max_sessions: 262144 # 256k concurrent sessions
# prealloc_sessions: 32768 # 32k sessions prealloc'd
# midstream: false # don't allow midstream session pickups
# async_oneside: false # don't enable async stream handling
stream:
# Logging configuration. This is not about logging IDS alerts, but
# IDS output about what its doing, errors, etc.
logging:
# The default log level, can be overridden in an output section.
# Note that debug level logging will only be emitted if Suricata was
# compiled with the --enable-debug configure option.
#
# This value is overriden by the SC_LOG_LEVEL env var.
default-log-level: info
# The default output format. Optional parameter, should default to
# something reasonable if not provided. Can be overriden in an
# output section. You can leave this out to get the default.
#
# This value is overriden by the SC_LOG_FORMAT env var.
#default-log-format: "[%i] %t - (%f:%l) <%d> (%n) -- "
# A regex to filter output. Can be overridden in an output section.
# Defaults to empty (no filter).
#
# This value is overriden by the SC_LOG_OP_FILTER env var.
default-output-filter:
# Define your logging outputs. If none are defined, or they are all
# disabled you will get the default - console output.
outputs:
- console:
enabled: yes
- file:
enabled: no
filename: /var/log/suricata.log
- syslog:
enabled: no
facility: local5
format: "[%i] <%d> -- "
# PF_RING configuration. for use with native PF_RING support
# for more info see http://www.ntop.org/PF_RING.html
pfring:
# Default interface we will listen on.
interface: eth0
# Default clusterid. PF_RING will load balance packets based on flow.
# All threads/processes that will participate need to have the same
# clusterid.
cluster-id: 99
# Default PF_RING cluster type. PF_RING can load balance per flow or per hash.
# This is only supported in versions of PF_RING > 4.1.1.
cluster-type: cluster_round_robin
# For FreeBSD ipfw(8) divert(4) support.
# Please make sure you have ipfw_load="YES" and ipdivert_load="YES"
# in /etc/loader.conf or kldload'ing the appropriate kernel modules.
# Additionally, you need to have an ipfw rule for the engine to see
# the packets from ipfw. For Example:
#
# ipfw add 100 divert 8000 ip from any to any
#
# The 8000 above should be the same number you passed on the command
# line, i.e. -d 8000
#
ipfw:
# Reinject packets at the specified ipfw rule number. This config
# option is the ipfw rule number AT WHICH rule processing continues
# in the ipfw processing system after the engine has finished
# inspecting the packet for acceptance. If no rule number is specified,
# accepted packets are reinjected at the divert rule which they entered
# and IPFW rule processing continues. No check is done to verify
# this will rule makes sense so care must be taken to avoid loops in ipfw.
#
## The following example tells the engine to reinject packets
# back into the ipfw firewall AT rule number 5500:
#
# ipfw-reinjection-rule-number: 5500
# Set the default rule path here to search for the files.
# if not set, it will look at the current working dir
default-rule-path: /etc/suricata/rules/
rule-files:
- attack-responses.rules
- backdoor.rules
- bad-traffic.rules
- chat.rules
- ddos.rules
- deleted.rules
- dns.rules
- dos.rules
- experimental.rules
- exploit.rules
- finger.rules
- ftp.rules
- icmp-info.rules
- icmp.rules
- imap.rules
- info.rules
- local.rules
- misc.rules
- multimedia.rules
- mysql.rules
- netbios.rules
- nntp.rules
- oracle.rules
- other-ids.rules
- p2p.rules
- policy.rules
- pop2.rules
- pop3.rules
- porn.rules
- rpc.rules
- rservices.rules
- scada.rules
- scan.rules
- shellcode.rules
- smtp.rules
- snmp.rules
- specific-threats.rules
- spyware-put.rules
- sql.rules
- telnet.rules
- tftp.rules
- virus.rules
- voip.rules
- web-activex.rules
- web-attacks.rules
- web-cgi.rules
- web-client.rules
- web-coldfusion.rules
- web-frontpage.rules
- web-iis.rules
- web-misc.rules
- web-php.rules
- x11.rules
- emerging-attack_response.rules
- emerging-dos.rules
- emerging-exploit.rules
- emerging-game.rules
- emerging-inappropriate.rules
- emerging-malware.rules
- emerging-p2p.rules
- emerging-policy.rules
- emerging-scan.rules
- emerging-virus.rules
- emerging-voip.rules
- emerging-web.rules
- emerging-web_client.rules
- emerging-web_server.rules
- emerging-web_specific_apps.rules
- emerging-user_agents.rules
- emerging-current_events.rules
classification-file: /etc/suricata/classification.config
# Holds variables that would be used by the engine.
vars:
# Holds the address group vars that would be passed in a Signature.
# These would be retrieved during the Signature address parsing stage.
address-groups:
HOME_NET: "[192.168.0.0/16,10.0.0.0/8,172.16.0.0/12]"
EXTERNAL_NET: any
HTTP_SERVERS: "$HOME_NET"
SMTP_SERVERS: "$HOME_NET"
SQL_SERVERS: "$HOME_NET"
DNS_SERVERS: "$HOME_NET"
TELNET_SERVERS: "$HOME_NET"
AIM_SERVERS: any
# Holds the port group vars that would be passed in a Signature.
# These would be retrieved during the Signature port parsing stage.
port-groups:
HTTP_PORTS: "80"
SHELLCODE_PORTS: "!80"
ORACLE_PORTS: 1521
SSH_PORTS: 22
# Host specific policies for defragmentation and TCP stream
# reassembly. The host OS lookup is done using a radix tree, just
# like a routing table so the most specific entry matches.
host-os-policy:
# Make the default policy windows.
windows: [0.0.0.0/0]
bsd: []
bsd_right: []
old_linux: []
linux: [10.0.0.0/8, 192.168.1.100, "8762:2352:6241:7245:E000:0000:0000:0000"]
old_solaris: []
solaris: ["::1"]
hpux10: []
hpux11: []
irix: []
macos: []
vista: []
windows2k3: []
###########################################################################
# Configure libhtp.
#
#
# default-config: Used when no server-config matches
# personality: List of personalities used by default
#
# server-config: List of server configurations to use if address matches
# address: List of ip addresses or networks for this block
# personalitiy: List of personalities used by this block
#
# Currently Available Personalities:
# Minimal
# Generic
# IDS (default)
# IIS_4_0
# IIS_5_0
# IIS_5_1
# IIS_6_0
# IIS_7_0
# IIS_7_5
# Apache
# Apache_2_2
###########################################################################
libhtp:
default-config:
personality: IDS
server-config:
- apache:
address: [192.168.1.0/24, 127.0.0.0/8, "::1"]
personality: Apache_2_2
- iis7:
address:
- 192.168.0.0/24
- 192.168.10.0/24
personality: IIS_7_0
# rule profiling settings. Only effective if Suricata has been built with the
# the --enable-profiling configure flag.
#
profiling:
rules:
# Profiling can be disabled here, but it will still have a
# performance impact if compiled in.
enabled: yes
# Sort options: ticks, avgticks, checks, matches
sort: avgticks
# Limit the number of items printed at exit.
limit: 100