You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
suricata/src/decode.c

1032 lines
34 KiB
C

/* Copyright (C) 2007-2024 Open Information Security Foundation
*
* You can copy, redistribute or modify this Program under the terms of
* the GNU General Public License version 2 as published by the Free
* Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* version 2 along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA.
*/
/**
* \defgroup decode Packet decoding
*
* \brief Code in charge of protocol decoding
*
* The task of decoding packets is made in different files and
* as Suricata is supporting encapsulation there is a potential
* recursivity in the call.
*
* For each protocol a DecodePROTO function is provided. For
* example we have DecodeIPV4() for IPv4 and DecodePPP() for
* PPP.
*
* These functions have all a pkt and a len argument which
* are respectively a pointer to the protocol data and the length
* of this protocol data.
*
* \attention The pkt parameter must point to the effective data because
* it will be used later to set per protocol pointer like Packet::tcph
*
* @{
*/
/**
* \file
*
* \author Victor Julien <victor@inliniac.net>
*
* Decode the raw packet
*/
#include "suricata-common.h"
#include "decode.h"
#include "packet.h"
#include "flow.h"
#include "flow-storage.h"
#include "tmqh-packetpool.h"
#include "app-layer.h"
#include "output.h"
#include "decode-vxlan.h"
#include "decode-geneve.h"
#include "decode-erspan.h"
#include "decode-teredo.h"
#include "decode-arp.h"
#include "defrag-hash.h"
#include "util-hash.h"
#include "util-hash-string.h"
#include "util-print.h"
#include "util-profiling.h"
#include "util-validate.h"
#include "util-debug.h"
#include "util-exception-policy.h"
#include "action-globals.h"
uint32_t default_packet_size = 0;
extern bool stats_decoder_events;
extern const char *stats_decoder_events_prefix;
extern bool stats_stream_events;
uint8_t decoder_max_layers = PKT_DEFAULT_MAX_DECODED_LAYERS;
uint16_t packet_alert_max = PACKET_ALERT_MAX;
/* Settings order as in the enum */
// clang-format off
ExceptionPolicyStatsSetts defrag_memcap_eps_stats = {
.valid_settings_ids = {
/* EXCEPTION_POLICY_NOT_SET */ false,
/* EXCEPTION_POLICY_AUTO */ false,
/* EXCEPTION_POLICY_PASS_PACKET */ true,
/* EXCEPTION_POLICY_PASS_FLOW */ false,
/* EXCEPTION_POLICY_BYPASS_FLOW */ true,
/* EXCEPTION_POLICY_DROP_PACKET */ false,
/* EXCEPTION_POLICY_DROP_FLOW */ false,
/* EXCEPTION_POLICY_REJECT */ true,
},
.valid_settings_ips = {
/* EXCEPTION_POLICY_NOT_SET */ false,
/* EXCEPTION_POLICY_AUTO */ false,
/* EXCEPTION_POLICY_PASS_PACKET */ true,
/* EXCEPTION_POLICY_PASS_FLOW */ false,
/* EXCEPTION_POLICY_BYPASS_FLOW */ true,
/* EXCEPTION_POLICY_DROP_PACKET */ true,
/* EXCEPTION_POLICY_DROP_FLOW */ false,
/* EXCEPTION_POLICY_REJECT */ true,
},
};
// clang-format on
/* Settings order as in the enum */
// clang-format off
ExceptionPolicyStatsSetts flow_memcap_eps_stats = {
.valid_settings_ids = {
/* EXCEPTION_POLICY_NOT_SET */ false,
/* EXCEPTION_POLICY_AUTO */ false,
/* EXCEPTION_POLICY_PASS_PACKET */ true,
/* EXCEPTION_POLICY_PASS_FLOW */ false,
/* EXCEPTION_POLICY_BYPASS_FLOW */ true,
/* EXCEPTION_POLICY_DROP_PACKET */ false,
/* EXCEPTION_POLICY_DROP_FLOW */ false,
/* EXCEPTION_POLICY_REJECT */ true,
},
.valid_settings_ips = {
/* EXCEPTION_POLICY_NOT_SET */ false,
/* EXCEPTION_POLICY_AUTO */ false,
/* EXCEPTION_POLICY_PASS_PACKET */ true,
/* EXCEPTION_POLICY_PASS_FLOW */ false,
/* EXCEPTION_POLICY_BYPASS_FLOW */ true,
/* EXCEPTION_POLICY_DROP_PACKET */ true,
/* EXCEPTION_POLICY_DROP_FLOW */ false,
/* EXCEPTION_POLICY_REJECT */ true,
},
};
// clang-format on
/**
* \brief Initialize PacketAlerts with dynamic alerts array size
*
*/
PacketAlert *PacketAlertCreate(void)
{
PacketAlert *pa_array = SCCalloc(packet_alert_max, sizeof(PacketAlert));
BUG_ON(pa_array == NULL);
return pa_array;
}
void PacketAlertFree(PacketAlert *pa)
{
if (pa != NULL) {
SCFree(pa);
}
}
static int DecodeTunnel(ThreadVars *, DecodeThreadVars *, Packet *, const uint8_t *, uint32_t,
enum DecodeTunnelProto) WARN_UNUSED;
static int DecodeTunnel(ThreadVars *tv, DecodeThreadVars *dtv, Packet *p, const uint8_t *pkt,
uint32_t len, enum DecodeTunnelProto proto)
{
switch (proto) {
case DECODE_TUNNEL_PPP:
return DecodePPP(tv, dtv, p, pkt, len);
case DECODE_TUNNEL_IPV4:
DEBUG_VALIDATE_BUG_ON(len > UINT16_MAX);
return DecodeIPV4(tv, dtv, p, pkt, (uint16_t)len);
case DECODE_TUNNEL_IPV6:
case DECODE_TUNNEL_IPV6_TEREDO:
DEBUG_VALIDATE_BUG_ON(len > UINT16_MAX);
return DecodeIPV6(tv, dtv, p, pkt, (uint16_t)len);
case DECODE_TUNNEL_VLAN:
return DecodeVLAN(tv, dtv, p, pkt, len);
case DECODE_TUNNEL_ETHERNET:
return DecodeEthernet(tv, dtv, p, pkt, len);
case DECODE_TUNNEL_ERSPANII:
return DecodeERSPAN(tv, dtv, p, pkt, len);
case DECODE_TUNNEL_ERSPANI:
return DecodeERSPANTypeI(tv, dtv, p, pkt, len);
case DECODE_TUNNEL_NSH:
return DecodeNSH(tv, dtv, p, pkt, len);
case DECODE_TUNNEL_ARP:
return DecodeARP(tv, dtv, p, pkt, len);
default:
SCLogDebug("FIXME: DecodeTunnel: protocol %" PRIu32 " not supported.", proto);
break;
}
return TM_ECODE_OK;
}
/**
* \brief Return a malloced packet.
*/
void PacketFree(Packet *p)
{
PacketDestructor(p);
SCFree(p);
}
/**
* \brief Finalize decoding of a packet
*
* This function needs to be call at the end of decode
* functions when decoding has been successful.
*
*/
void PacketDecodeFinalize(ThreadVars *tv, DecodeThreadVars *dtv, Packet *p)
{
if (p->flags & PKT_IS_INVALID) {
StatsIncr(tv, dtv->counter_invalid);
}
}
void PacketUpdateEngineEventCounters(ThreadVars *tv,
DecodeThreadVars *dtv, Packet *p)
{
for (uint8_t i = 0; i < p->events.cnt; i++) {
const uint8_t e = p->events.events[i];
if (e <= DECODE_EVENT_PACKET_MAX && !stats_decoder_events)
continue;
else if (e > DECODE_EVENT_PACKET_MAX && !stats_stream_events)
continue;
StatsIncr(tv, dtv->counter_engine_events[e]);
}
}
/**
* \brief Get a malloced packet.
*
* \retval p packet, NULL on error
*/
Packet *PacketGetFromAlloc(void)
{
Packet *p = SCCalloc(1, SIZE_OF_PACKET);
if (unlikely(p == NULL)) {
return NULL;
}
PacketInit(p);
p->ReleasePacket = PacketFree;
SCLogDebug("allocated a new packet only using alloc...");
PACKET_PROFILING_START(p);
return p;
}
/**
* \brief Return a packet to where it was allocated.
*/
void PacketFreeOrRelease(Packet *p)
{
if (likely(p->pool != NULL)) {
p->ReleasePacket = PacketPoolReturnPacket;
PacketPoolReturnPacket(p);
} else {
PacketFree(p);
}
}
/**
* \brief Get a packet. We try to get a packet from the packetpool first, but
* if that is empty we alloc a packet that is free'd again after
* processing.
*
* \retval p packet, NULL on error
*/
Packet *PacketGetFromQueueOrAlloc(void)
{
/* try the pool first */
Packet *p = PacketPoolGetPacket();
if (p == NULL) {
/* non fatal, we're just not processing a packet then */
p = PacketGetFromAlloc();
} else {
DEBUG_VALIDATE_BUG_ON(p->ReleasePacket != PacketPoolReturnPacket);
PACKET_PROFILING_START(p);
}
return p;
}
inline int PacketCallocExtPkt(Packet *p, int datalen)
{
if (! p->ext_pkt) {
p->ext_pkt = SCCalloc(1, datalen);
if (unlikely(p->ext_pkt == NULL)) {
SET_PKT_LEN(p, 0);
return -1;
}
}
return 0;
}
/**
* \brief Copy data to Packet payload at given offset
*
* This function copies data/payload to a Packet. It uses the
* space allocated at Packet creation (pointed by Packet::pkt)
* or allocate some memory (pointed by Packet::ext_pkt) if the
* data size is to big to fit in initial space (of size
* default_packet_size).
*
* \param Pointer to the Packet to modify
* \param Offset of the copy relatively to payload of Packet
* \param Pointer to the data to copy
* \param Length of the data to copy
*/
inline int PacketCopyDataOffset(Packet *p, uint32_t offset, const uint8_t *data, uint32_t datalen)
{
if (unlikely(offset + datalen > MAX_PAYLOAD_SIZE)) {
/* too big */
SET_PKT_LEN(p, 0);
return -1;
}
/* Do we have already an packet with allocated data */
if (! p->ext_pkt) {
uint32_t newsize = offset + datalen;
// check overflow
if (newsize < offset)
return -1;
if (newsize <= default_packet_size) {
/* data will fit in memory allocated with packet */
memcpy(GET_PKT_DIRECT_DATA(p) + offset, data, datalen);
} else {
/* here we need a dynamic allocation */
p->ext_pkt = SCMalloc(MAX_PAYLOAD_SIZE);
if (unlikely(p->ext_pkt == NULL)) {
SET_PKT_LEN(p, 0);
return -1;
}
/* copy initial data */
memcpy(p->ext_pkt, GET_PKT_DIRECT_DATA(p), GET_PKT_DIRECT_MAX_SIZE(p));
/* copy data as asked */
memcpy(p->ext_pkt + offset, data, datalen);
}
} else {
memcpy(p->ext_pkt + offset, data, datalen);
}
return 0;
}
/**
* \brief Copy data to Packet payload and set packet length
*
* \param Pointer to the Packet to modify
* \param Pointer to the data to copy
* \param Length of the data to copy
*/
inline int PacketCopyData(Packet *p, const uint8_t *pktdata, uint32_t pktlen)
{
SET_PKT_LEN(p, (size_t)pktlen);
return PacketCopyDataOffset(p, 0, pktdata, pktlen);
}
/**
* \brief Setup a pseudo packet (tunnel)
*
* \param parent parent packet for this pseudo pkt
* \param pkt raw packet data
* \param len packet data length
* \param proto protocol of the tunneled packet
*
* \retval p the pseudo packet or NULL if out of memory
*/
Packet *PacketTunnelPktSetup(ThreadVars *tv, DecodeThreadVars *dtv, Packet *parent,
const uint8_t *pkt, uint32_t len, enum DecodeTunnelProto proto)
{
int ret;
SCEnter();
if (parent->nb_decoded_layers + 1 >= decoder_max_layers) {
ENGINE_SET_INVALID_EVENT(parent, GENERIC_TOO_MANY_LAYERS);
SCReturnPtr(NULL, "Packet");
}
/* get us a packet */
Packet *p = PacketGetFromQueueOrAlloc();
if (unlikely(p == NULL)) {
SCReturnPtr(NULL, "Packet");
}
/* copy packet and set length, proto */
PacketCopyData(p, pkt, len);
DEBUG_VALIDATE_BUG_ON(parent->recursion_level == 255);
p->recursion_level = parent->recursion_level + 1;
DEBUG_VALIDATE_BUG_ON(parent->nb_decoded_layers >= decoder_max_layers);
p->nb_decoded_layers = parent->nb_decoded_layers + 1;
p->ts = parent->ts;
p->datalink = DLT_RAW;
p->tenant_id = parent->tenant_id;
p->livedev = parent->livedev;
/* set the root ptr to the lowest layer */
if (parent->root != NULL) {
p->root = parent->root;
BUG_ON(parent->ttype != PacketTunnelChild);
} else {
p->root = parent;
parent->ttype = PacketTunnelRoot;
}
/* tell new packet it's part of a tunnel */
p->ttype = PacketTunnelChild;
ret = DecodeTunnel(tv, dtv, p, GET_PKT_DATA(p),
GET_PKT_LEN(p), proto);
if (unlikely(ret != TM_ECODE_OK) ||
(proto == DECODE_TUNNEL_IPV6_TEREDO && (p->flags & PKT_IS_INVALID)))
{
/* Not a (valid) tunnel packet */
SCLogDebug("tunnel packet is invalid");
p->root = NULL;
TmqhOutputPacketpool(tv, p);
SCReturnPtr(NULL, "Packet");
}
/* Update tunnel settings in parent */
if (parent->root == NULL) {
parent->ttype = PacketTunnelRoot;
}
TUNNEL_INCR_PKT_TPR(p);
/* disable payload (not packet) inspection on the parent, as the payload
* is the packet we will now run through the system separately. We do
* check it against the ip/port/other header checks though */
DecodeSetNoPayloadInspectionFlag(parent);
SCReturnPtr(p, "Packet");
}
/**
* \brief Setup a pseudo packet (reassembled frags)
*
* Difference with PacketPseudoPktSetup is that this func doesn't increment
* the recursion level. It needs to be on the same level as the frags because
* we run the flow engine against this and we need to get the same flow.
*
* \param parent parent packet for this pseudo pkt
* \param pkt raw packet data
* \param len packet data length
* \param proto protocol of the tunneled packet
*
* \retval p the pseudo packet or NULL if out of memory
*/
Packet *PacketDefragPktSetup(Packet *parent, const uint8_t *pkt, uint32_t len, uint8_t proto)
{
SCEnter();
/* get us a packet */
Packet *p = PacketGetFromQueueOrAlloc();
if (unlikely(p == NULL)) {
SCReturnPtr(NULL, "Packet");
}
/* set the root ptr to the lowest layer */
if (parent->root != NULL) {
p->root = parent->root;
BUG_ON(parent->ttype != PacketTunnelChild);
} else {
p->root = parent;
// we set parent->ttype later
}
/* tell new packet it's part of a tunnel */
p->ttype = PacketTunnelChild;
/* copy packet and set length, proto */
if (pkt && len) {
PacketCopyData(p, pkt, len);
}
p->recursion_level = parent->recursion_level; /* NOT incremented */
p->ts = parent->ts;
p->tenant_id = parent->tenant_id;
memcpy(&p->vlan_id[0], &parent->vlan_id[0], sizeof(p->vlan_id));
p->vlan_idx = parent->vlan_idx;
p->livedev = parent->livedev;
SCReturnPtr(p, "Packet");
}
/**
* \brief inform defrag "parent" that a pseudo packet is
* now associated to it.
*/
void PacketDefragPktSetupParent(Packet *parent)
{
/* tell parent packet it's part of a tunnel */
if (parent->ttype == PacketTunnelNone)
parent->ttype = PacketTunnelRoot;
/* increment tunnel packet refcnt in the root packet */
TUNNEL_INCR_PKT_TPR(parent);
/* disable payload (not packet) inspection on the parent, as the payload
* is the packet we will now run through the system separately. We do
* check it against the ip/port/other header checks though */
DecodeSetNoPayloadInspectionFlag(parent);
}
/**
* \note if p->flow is set, the flow is locked
*/
void PacketBypassCallback(Packet *p)
{
if (PKT_IS_PSEUDOPKT(p))
return;
#ifdef CAPTURE_OFFLOAD
/* Don't try to bypass if flow is already out or
* if we have failed to do it once */
if (p->flow) {
int state = p->flow->flow_state;
if ((state == FLOW_STATE_LOCAL_BYPASSED) ||
(state == FLOW_STATE_CAPTURE_BYPASSED)) {
return;
}
FlowBypassInfo *fc;
fc = FlowGetStorageById(p->flow, GetFlowBypassInfoID());
if (fc == NULL) {
fc = SCCalloc(sizeof(FlowBypassInfo), 1);
if (fc) {
FlowSetStorageById(p->flow, GetFlowBypassInfoID(), fc);
} else {
return;
}
}
}
if (p->BypassPacketsFlow && p->BypassPacketsFlow(p)) {
if (p->flow) {
FlowUpdateState(p->flow, FLOW_STATE_CAPTURE_BYPASSED);
}
} else {
if (p->flow) {
FlowUpdateState(p->flow, FLOW_STATE_LOCAL_BYPASSED);
}
}
#else /* CAPTURE_OFFLOAD */
if (p->flow) {
int state = p->flow->flow_state;
if (state == FLOW_STATE_LOCAL_BYPASSED)
return;
FlowUpdateState(p->flow, FLOW_STATE_LOCAL_BYPASSED);
}
#endif
}
/** \brief switch direction of a packet */
void PacketSwap(Packet *p)
{
if (PKT_IS_TOSERVER(p)) {
p->flowflags &= ~FLOW_PKT_TOSERVER;
p->flowflags |= FLOW_PKT_TOCLIENT;
if (p->flowflags & FLOW_PKT_TOSERVER_FIRST) {
p->flowflags &= ~FLOW_PKT_TOSERVER_FIRST;
p->flowflags |= FLOW_PKT_TOCLIENT_FIRST;
}
} else {
p->flowflags &= ~FLOW_PKT_TOCLIENT;
p->flowflags |= FLOW_PKT_TOSERVER;
if (p->flowflags & FLOW_PKT_TOCLIENT_FIRST) {
p->flowflags &= ~FLOW_PKT_TOCLIENT_FIRST;
p->flowflags |= FLOW_PKT_TOSERVER_FIRST;
}
}
}
/* counter name store */
static HashTable *g_counter_table = NULL;
static SCMutex g_counter_table_mutex = SCMUTEX_INITIALIZER;
void DecodeUnregisterCounters(void)
{
SCMutexLock(&g_counter_table_mutex);
if (g_counter_table) {
HashTableFree(g_counter_table);
g_counter_table = NULL;
}
SCMutexUnlock(&g_counter_table_mutex);
}
static bool IsDefragMemcapExceptionPolicyStatsValid(enum ExceptionPolicy policy)
{
if (EngineModeIsIPS()) {
return defrag_memcap_eps_stats.valid_settings_ips[policy];
}
return defrag_memcap_eps_stats.valid_settings_ids[policy];
}
static bool IsFlowMemcapExceptionPolicyStatsValid(enum ExceptionPolicy policy)
{
if (EngineModeIsIPS()) {
return flow_memcap_eps_stats.valid_settings_ips[policy];
}
return flow_memcap_eps_stats.valid_settings_ids[policy];
}
void DecodeRegisterPerfCounters(DecodeThreadVars *dtv, ThreadVars *tv)
{
/* register counters */
dtv->counter_pkts = StatsRegisterCounter("decoder.pkts", tv);
dtv->counter_bytes = StatsRegisterCounter("decoder.bytes", tv);
dtv->counter_invalid = StatsRegisterCounter("decoder.invalid", tv);
dtv->counter_ipv4 = StatsRegisterCounter("decoder.ipv4", tv);
dtv->counter_ipv6 = StatsRegisterCounter("decoder.ipv6", tv);
dtv->counter_eth = StatsRegisterCounter("decoder.ethernet", tv);
dtv->counter_arp = StatsRegisterCounter("decoder.arp", tv);
dtv->counter_ethertype_unknown = StatsRegisterCounter("decoder.unknown_ethertype", tv);
dtv->counter_chdlc = StatsRegisterCounter("decoder.chdlc", tv);
dtv->counter_raw = StatsRegisterCounter("decoder.raw", tv);
dtv->counter_null = StatsRegisterCounter("decoder.null", tv);
dtv->counter_sll = StatsRegisterCounter("decoder.sll", tv);
dtv->counter_tcp = StatsRegisterCounter("decoder.tcp", tv);
dtv->counter_tcp_syn = StatsRegisterCounter("tcp.syn", tv);
dtv->counter_tcp_synack = StatsRegisterCounter("tcp.synack", tv);
dtv->counter_tcp_rst = StatsRegisterCounter("tcp.rst", tv);
dtv->counter_udp = StatsRegisterCounter("decoder.udp", tv);
dtv->counter_sctp = StatsRegisterCounter("decoder.sctp", tv);
dtv->counter_esp = StatsRegisterCounter("decoder.esp", tv);
dtv->counter_icmpv4 = StatsRegisterCounter("decoder.icmpv4", tv);
dtv->counter_icmpv6 = StatsRegisterCounter("decoder.icmpv6", tv);
dtv->counter_ppp = StatsRegisterCounter("decoder.ppp", tv);
dtv->counter_pppoe = StatsRegisterCounter("decoder.pppoe", tv);
dtv->counter_geneve = StatsRegisterCounter("decoder.geneve", tv);
dtv->counter_gre = StatsRegisterCounter("decoder.gre", tv);
dtv->counter_vlan = StatsRegisterCounter("decoder.vlan", tv);
dtv->counter_vlan_qinq = StatsRegisterCounter("decoder.vlan_qinq", tv);
dtv->counter_vlan_qinqinq = StatsRegisterCounter("decoder.vlan_qinqinq", tv);
dtv->counter_vxlan = StatsRegisterCounter("decoder.vxlan", tv);
dtv->counter_vntag = StatsRegisterCounter("decoder.vntag", tv);
dtv->counter_ieee8021ah = StatsRegisterCounter("decoder.ieee8021ah", tv);
dtv->counter_teredo = StatsRegisterCounter("decoder.teredo", tv);
dtv->counter_ipv4inipv6 = StatsRegisterCounter("decoder.ipv4_in_ipv6", tv);
dtv->counter_ipv6inipv6 = StatsRegisterCounter("decoder.ipv6_in_ipv6", tv);
dtv->counter_mpls = StatsRegisterCounter("decoder.mpls", tv);
dtv->counter_avg_pkt_size = StatsRegisterAvgCounter("decoder.avg_pkt_size", tv);
dtv->counter_max_pkt_size = StatsRegisterMaxCounter("decoder.max_pkt_size", tv);
dtv->counter_max_mac_addrs_src = StatsRegisterMaxCounter("decoder.max_mac_addrs_src", tv);
dtv->counter_max_mac_addrs_dst = StatsRegisterMaxCounter("decoder.max_mac_addrs_dst", tv);
dtv->counter_erspan = StatsRegisterMaxCounter("decoder.erspan", tv);
dtv->counter_nsh = StatsRegisterMaxCounter("decoder.nsh", tv);
dtv->counter_flow_memcap = StatsRegisterCounter("flow.memcap", tv);
ExceptionPolicySetStatsCounters(tv, &dtv->counter_flow_memcap_eps, &flow_memcap_eps_stats,
FlowGetMemcapExceptionPolicy(), "flow.memcap_exception_policy.",
IsFlowMemcapExceptionPolicyStatsValid);
dtv->counter_tcp_active_sessions = StatsRegisterCounter("tcp.active_sessions", tv);
dtv->counter_flow_total = StatsRegisterCounter("flow.total", tv);
dtv->counter_flow_active = StatsRegisterCounter("flow.active", tv);
dtv->counter_flow_tcp = StatsRegisterCounter("flow.tcp", tv);
dtv->counter_flow_udp = StatsRegisterCounter("flow.udp", tv);
dtv->counter_flow_icmp4 = StatsRegisterCounter("flow.icmpv4", tv);
dtv->counter_flow_icmp6 = StatsRegisterCounter("flow.icmpv6", tv);
dtv->counter_flow_tcp_reuse = StatsRegisterCounter("flow.tcp_reuse", tv);
dtv->counter_flow_get_used = StatsRegisterCounter("flow.get_used", tv);
dtv->counter_flow_get_used_eval = StatsRegisterCounter("flow.get_used_eval", tv);
dtv->counter_flow_get_used_eval_reject = StatsRegisterCounter("flow.get_used_eval_reject", tv);
dtv->counter_flow_get_used_eval_busy = StatsRegisterCounter("flow.get_used_eval_busy", tv);
dtv->counter_flow_get_used_failed = StatsRegisterCounter("flow.get_used_failed", tv);
dtv->counter_flow_spare_sync_avg = StatsRegisterAvgCounter("flow.wrk.spare_sync_avg", tv);
dtv->counter_flow_spare_sync = StatsRegisterCounter("flow.wrk.spare_sync", tv);
dtv->counter_flow_spare_sync_incomplete = StatsRegisterCounter("flow.wrk.spare_sync_incomplete", tv);
dtv->counter_flow_spare_sync_empty = StatsRegisterCounter("flow.wrk.spare_sync_empty", tv);
dtv->counter_defrag_ipv4_fragments =
StatsRegisterCounter("defrag.ipv4.fragments", tv);
dtv->counter_defrag_ipv4_reassembled = StatsRegisterCounter("defrag.ipv4.reassembled", tv);
dtv->counter_defrag_ipv6_fragments =
StatsRegisterCounter("defrag.ipv6.fragments", tv);
dtv->counter_defrag_ipv6_reassembled = StatsRegisterCounter("defrag.ipv6.reassembled", tv);
dtv->counter_defrag_max_hit = StatsRegisterCounter("defrag.max_trackers_reached", tv);
dtv->counter_defrag_no_frags = StatsRegisterCounter("defrag.max_frags_reached", tv);
dtv->counter_defrag_tracker_soft_reuse = StatsRegisterCounter("defrag.tracker_soft_reuse", tv);
dtv->counter_defrag_tracker_hard_reuse = StatsRegisterCounter("defrag.tracker_hard_reuse", tv);
dtv->counter_defrag_tracker_timeout = StatsRegisterCounter("defrag.wrk.tracker_timeout", tv);
ExceptionPolicySetStatsCounters(tv, &dtv->counter_defrag_memcap_eps, &defrag_memcap_eps_stats,
DefragGetMemcapExceptionPolicy(), "defrag.memcap_exception_policy.",
IsDefragMemcapExceptionPolicyStatsValid);
for (int i = 0; i < DECODE_EVENT_MAX; i++) {
BUG_ON(i != (int)DEvents[i].code);
if (i <= DECODE_EVENT_PACKET_MAX && !stats_decoder_events)
continue;
else if (i > DECODE_EVENT_PACKET_MAX && !stats_stream_events)
continue;
if (i < DECODE_EVENT_PACKET_MAX &&
strncmp(DEvents[i].event_name, "decoder.", 8) == 0)
{
SCMutexLock(&g_counter_table_mutex);
if (g_counter_table == NULL) {
g_counter_table = HashTableInit(256, StringHashFunc,
StringHashCompareFunc,
StringHashFreeFunc);
if (g_counter_table == NULL) {
FatalError("decoder counter hash "
"table init failed");
}
}
char name[256];
char *dot = strchr(DEvents[i].event_name, '.');
BUG_ON(!dot);
snprintf(name, sizeof(name), "%s.%s",
stats_decoder_events_prefix, dot+1);
const char *found = HashTableLookup(g_counter_table, name, 0);
if (!found) {
char *add = SCStrdup(name);
if (add == NULL)
FatalError("decoder counter hash "
"table name init failed");
int r = HashTableAdd(g_counter_table, add, 0);
if (r != 0)
FatalError("decoder counter hash "
"table name add failed");
found = add;
}
dtv->counter_engine_events[i] = StatsRegisterCounter(
found, tv);
SCMutexUnlock(&g_counter_table_mutex);
} else {
dtv->counter_engine_events[i] = StatsRegisterCounter(
DEvents[i].event_name, tv);
}
}
}
void DecodeUpdatePacketCounters(ThreadVars *tv,
const DecodeThreadVars *dtv, const Packet *p)
{
StatsIncr(tv, dtv->counter_pkts);
//StatsIncr(tv, dtv->counter_pkts_per_sec);
StatsAddUI64(tv, dtv->counter_bytes, GET_PKT_LEN(p));
StatsAddUI64(tv, dtv->counter_avg_pkt_size, GET_PKT_LEN(p));
StatsSetUI64(tv, dtv->counter_max_pkt_size, GET_PKT_LEN(p));
}
/**
* \brief Debug print function for printing addresses
*
* \param Address object
*
* \todo IPv6
*/
void AddressDebugPrint(Address *a)
{
if (a == NULL)
return;
switch (a->family) {
case AF_INET:
{
char s[16];
PrintInet(AF_INET, (const void *)&a->addr_data32[0], s, sizeof(s));
SCLogDebug("%s", s);
break;
}
}
}
/** \brief Alloc and setup DecodeThreadVars */
DecodeThreadVars *DecodeThreadVarsAlloc(ThreadVars *tv)
{
DecodeThreadVars *dtv = NULL;
if ((dtv = SCCalloc(1, sizeof(DecodeThreadVars))) == NULL)
return NULL;
dtv->app_tctx = AppLayerGetCtxThread();
if (OutputFlowLogThreadInit(tv, NULL, &dtv->output_flow_thread_data) != TM_ECODE_OK) {
SCLogError("initializing flow log API for thread failed");
DecodeThreadVarsFree(tv, dtv);
return NULL;
}
return dtv;
}
void DecodeThreadVarsFree(ThreadVars *tv, DecodeThreadVars *dtv)
{
if (dtv != NULL) {
if (dtv->app_tctx != NULL)
AppLayerDestroyCtxThread(dtv->app_tctx);
if (dtv->output_flow_thread_data != NULL)
OutputFlowLogThreadDeinit(tv, dtv->output_flow_thread_data);
SCFree(dtv);
}
}
/**
* \brief Set data for Packet and set length when zero copy is used
*
* \param Pointer to the Packet to modify
* \param Pointer to the data
* \param Length of the data
*/
inline int PacketSetData(Packet *p, const uint8_t *pktdata, uint32_t pktlen)
{
SET_PKT_LEN(p, (size_t)pktlen);
if (unlikely(!pktdata)) {
return -1;
}
// ext_pkt cannot be const (because we sometimes copy)
p->ext_pkt = (uint8_t *) pktdata;
p->flags |= PKT_ZERO_COPY;
return 0;
}
const char *PktSrcToString(enum PktSrcEnum pkt_src)
{
const char *pkt_src_str = NULL;
switch (pkt_src) {
case PKT_SRC_WIRE:
pkt_src_str = "wire/pcap";
break;
case PKT_SRC_DECODER_GRE:
pkt_src_str = "gre tunnel";
break;
case PKT_SRC_DECODER_IPV4:
pkt_src_str = "ipv4 tunnel";
break;
case PKT_SRC_DECODER_IPV6:
pkt_src_str = "ipv6 tunnel";
break;
case PKT_SRC_DECODER_TEREDO:
pkt_src_str = "teredo tunnel";
break;
case PKT_SRC_DEFRAG:
pkt_src_str = "defrag";
break;
case PKT_SRC_STREAM_TCP_DETECTLOG_FLUSH:
pkt_src_str = "stream (detect/log)";
break;
case PKT_SRC_FFR:
pkt_src_str = "stream (flow timeout)";
break;
case PKT_SRC_DECODER_GENEVE:
pkt_src_str = "geneve encapsulation";
break;
case PKT_SRC_DECODER_VXLAN:
pkt_src_str = "vxlan encapsulation";
break;
case PKT_SRC_DETECT_RELOAD_FLUSH:
pkt_src_str = "detect reload flush";
break;
case PKT_SRC_CAPTURE_TIMEOUT:
pkt_src_str = "capture timeout flush";
break;
case PKT_SRC_SHUTDOWN_FLUSH:
pkt_src_str = "shutdown flush";
break;
}
DEBUG_VALIDATE_BUG_ON(pkt_src_str == NULL);
return pkt_src_str;
}
const char *PacketDropReasonToString(enum PacketDropReason r)
{
switch (r) {
case PKT_DROP_REASON_DECODE_ERROR:
return "decode error";
case PKT_DROP_REASON_DEFRAG_ERROR:
return "defrag error";
case PKT_DROP_REASON_DEFRAG_MEMCAP:
return "defrag memcap";
case PKT_DROP_REASON_FLOW_MEMCAP:
return "flow memcap";
case PKT_DROP_REASON_FLOW_DROP:
return "flow drop";
case PKT_DROP_REASON_STREAM_ERROR:
return "stream error";
case PKT_DROP_REASON_STREAM_MEMCAP:
return "stream memcap";
case PKT_DROP_REASON_STREAM_MIDSTREAM:
return "stream midstream";
case PKT_DROP_REASON_STREAM_REASSEMBLY:
return "stream reassembly";
case PKT_DROP_REASON_APPLAYER_ERROR:
return "applayer error";
case PKT_DROP_REASON_APPLAYER_MEMCAP:
return "applayer memcap";
case PKT_DROP_REASON_RULES:
return "rules";
case PKT_DROP_REASON_RULES_THRESHOLD:
return "threshold detection_filter";
case PKT_DROP_REASON_NFQ_ERROR:
return "nfq error";
case PKT_DROP_REASON_INNER_PACKET:
return "tunnel packet drop";
case PKT_DROP_REASON_NOT_SET:
case PKT_DROP_REASON_MAX:
return NULL;
}
return NULL;
}
static const char *PacketDropReasonToJsonString(enum PacketDropReason r)
{
switch (r) {
case PKT_DROP_REASON_DECODE_ERROR:
return "ips.drop_reason.decode_error";
case PKT_DROP_REASON_DEFRAG_ERROR:
return "ips.drop_reason.defrag_error";
case PKT_DROP_REASON_DEFRAG_MEMCAP:
return "ips.drop_reason.defrag_memcap";
case PKT_DROP_REASON_FLOW_MEMCAP:
return "ips.drop_reason.flow_memcap";
case PKT_DROP_REASON_FLOW_DROP:
return "ips.drop_reason.flow_drop";
case PKT_DROP_REASON_STREAM_ERROR:
return "ips.drop_reason.stream_error";
case PKT_DROP_REASON_STREAM_MEMCAP:
return "ips.drop_reason.stream_memcap";
case PKT_DROP_REASON_STREAM_MIDSTREAM:
return "ips.drop_reason.stream_midstream";
case PKT_DROP_REASON_STREAM_REASSEMBLY:
return "ips.drop_reason.stream_reassembly";
case PKT_DROP_REASON_APPLAYER_ERROR:
return "ips.drop_reason.applayer_error";
case PKT_DROP_REASON_APPLAYER_MEMCAP:
return "ips.drop_reason.applayer_memcap";
case PKT_DROP_REASON_RULES:
return "ips.drop_reason.rules";
case PKT_DROP_REASON_RULES_THRESHOLD:
return "ips.drop_reason.threshold_detection_filter";
case PKT_DROP_REASON_NFQ_ERROR:
return "ips.drop_reason.nfq_error";
case PKT_DROP_REASON_INNER_PACKET:
return "ips.drop_reason.tunnel_packet_drop";
case PKT_DROP_REASON_NOT_SET:
case PKT_DROP_REASON_MAX:
return NULL;
}
return NULL;
}
typedef struct CaptureStats_ {
uint16_t counter_ips_accepted;
uint16_t counter_ips_blocked;
uint16_t counter_ips_rejected;
uint16_t counter_ips_replaced;
uint16_t counter_drop_reason[PKT_DROP_REASON_MAX];
} CaptureStats;
thread_local CaptureStats t_capture_stats;
void CaptureStatsUpdate(ThreadVars *tv, const Packet *p)
{
if (!EngineModeIsIPS() || PKT_IS_PSEUDOPKT(p))
return;
CaptureStats *s = &t_capture_stats;
if (unlikely(PacketCheckAction(p, ACTION_REJECT_ANY))) {
StatsIncr(tv, s->counter_ips_rejected);
} else if (unlikely(PacketCheckAction(p, ACTION_DROP))) {
StatsIncr(tv, s->counter_ips_blocked);
} else if (unlikely(p->flags & PKT_STREAM_MODIFIED)) {
StatsIncr(tv, s->counter_ips_replaced);
} else {
StatsIncr(tv, s->counter_ips_accepted);
}
if (p->drop_reason != PKT_DROP_REASON_NOT_SET) {
StatsIncr(tv, s->counter_drop_reason[p->drop_reason]);
}
}
void CaptureStatsSetup(ThreadVars *tv)
{
if (EngineModeIsIPS()) {
CaptureStats *s = &t_capture_stats;
s->counter_ips_accepted = StatsRegisterCounter("ips.accepted", tv);
s->counter_ips_blocked = StatsRegisterCounter("ips.blocked", tv);
s->counter_ips_rejected = StatsRegisterCounter("ips.rejected", tv);
s->counter_ips_replaced = StatsRegisterCounter("ips.replaced", tv);
for (int i = PKT_DROP_REASON_NOT_SET; i < PKT_DROP_REASON_MAX; i++) {
const char *name = PacketDropReasonToJsonString(i);
if (name != NULL)
s->counter_drop_reason[i] = StatsRegisterCounter(name, tv);
}
}
}
void DecodeGlobalConfig(void)
{
DecodeTeredoConfig();
DecodeGeneveConfig();
DecodeVXLANConfig();
DecodeERSPANConfig();
intmax_t value = 0;
if (ConfGetInt("decoder.max-layers", &value) == 1) {
if (value < 0 || value > UINT8_MAX) {
SCLogWarning("Invalid value for decoder.max-layers");
} else {
decoder_max_layers = (uint8_t)value;
}
}
PacketAlertGetMaxConfig();
}
void PacketAlertGetMaxConfig(void)
{
intmax_t max = 0;
if (ConfGetInt("packet-alert-max", &max) == 1) {
if (max <= 0 || max > UINT8_MAX) {
SCLogWarning("Invalid value for packet-alert-max, default value set instead");
} else {
packet_alert_max = (uint16_t)max;
}
}
SCLogDebug("detect->packet_alert_max set to %d", packet_alert_max);
}
/**
* @}
*/