You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
suricata/src/source-af-packet.c

1693 lines
51 KiB
C

/* Copyright (C) 2011,2012 Open Information Security Foundation
*
* You can copy, redistribute or modify this Program under the terms of
* the GNU General Public License version 2 as published by the Free
* Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* version 2 along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA.
*/
/**
* \defgroup afppacket AF_PACKET running mode
*
* @{
*/
/**
* \file
*
* \author Eric Leblond <eric@regit.org>
*
* AF_PACKET socket acquisition support
*
* \todo watch other interface event to detect suppression of the monitored
* interface
*/
#include "suricata-common.h"
#include "config.h"
#include "suricata.h"
#include "decode.h"
#include "packet-queue.h"
#include "threads.h"
#include "threadvars.h"
#include "tm-queuehandlers.h"
#include "tm-modules.h"
#include "tm-threads.h"
#include "tm-threads-common.h"
#include "conf.h"
#include "util-debug.h"
#include "util-device.h"
#include "util-error.h"
#include "util-privs.h"
#include "util-optimize.h"
#include "util-checksum.h"
#include "util-ioctl.h"
#include "tmqh-packetpool.h"
#include "source-af-packet.h"
#include "runmodes.h"
#ifdef HAVE_AF_PACKET
#if HAVE_SYS_IOCTL_H
#include <sys/ioctl.h>
#endif
#if HAVE_LINUX_IF_ETHER_H
#include <linux/if_ether.h>
#endif
#if HAVE_LINUX_IF_PACKET_H
#include <linux/if_packet.h>
#endif
#if HAVE_LINUX_IF_ARP_H
#include <linux/if_arp.h>
#endif
#if HAVE_LINUX_FILTER_H
#include <linux/filter.h>
#endif
#if HAVE_SYS_MMAN_H
#include <sys/mman.h>
#endif
#endif /* HAVE_AF_PACKET */
extern uint8_t suricata_ctl_flags;
extern int max_pending_packets;
#ifndef HAVE_AF_PACKET
TmEcode NoAFPSupportExit(ThreadVars *, void *, void **);
void TmModuleReceiveAFPRegister (void) {
tmm_modules[TMM_RECEIVEAFP].name = "ReceiveAFP";
tmm_modules[TMM_RECEIVEAFP].ThreadInit = NoAFPSupportExit;
tmm_modules[TMM_RECEIVEAFP].Func = NULL;
tmm_modules[TMM_RECEIVEAFP].ThreadExitPrintStats = NULL;
tmm_modules[TMM_RECEIVEAFP].ThreadDeinit = NULL;
tmm_modules[TMM_RECEIVEAFP].RegisterTests = NULL;
tmm_modules[TMM_RECEIVEAFP].cap_flags = 0;
tmm_modules[TMM_RECEIVEAFP].flags = TM_FLAG_RECEIVE_TM;
}
/**
* \brief Registration Function for DecodeAFP.
* \todo Unit tests are needed for this module.
*/
void TmModuleDecodeAFPRegister (void) {
tmm_modules[TMM_DECODEAFP].name = "DecodeAFP";
tmm_modules[TMM_DECODEAFP].ThreadInit = NoAFPSupportExit;
tmm_modules[TMM_DECODEAFP].Func = NULL;
tmm_modules[TMM_DECODEAFP].ThreadExitPrintStats = NULL;
tmm_modules[TMM_DECODEAFP].ThreadDeinit = NULL;
tmm_modules[TMM_DECODEAFP].RegisterTests = NULL;
tmm_modules[TMM_DECODEAFP].cap_flags = 0;
tmm_modules[TMM_DECODEAFP].flags = TM_FLAG_DECODE_TM;
}
/**
* \brief this function prints an error message and exits.
*/
TmEcode NoAFPSupportExit(ThreadVars *tv, void *initdata, void **data)
{
SCLogError(SC_ERR_NO_AF_PACKET,"Error creating thread %s: you do not have "
"support for AF_PACKET enabled, on Linux host please recompile "
"with --enable-af-packet", tv->name);
exit(EXIT_FAILURE);
}
#else /* We have AF_PACKET support */
#define AFP_IFACE_NAME_LENGTH 48
#define AFP_STATE_DOWN 0
#define AFP_STATE_UP 1
#define AFP_RECONNECT_TIMEOUT 500000
#define AFP_DOWN_COUNTER_INTERVAL 40
#define POLL_TIMEOUT 100
#ifndef TP_STATUS_USER_BUSY
/* for new use latest bit available in tp_status */
#define TP_STATUS_USER_BUSY (1 << 31)
#endif
/** protect pfring_set_bpf_filter, as it is not thread safe */
static SCMutex afpacket_bpf_set_filter_lock = PTHREAD_MUTEX_INITIALIZER;
enum {
AFP_READ_OK,
AFP_READ_FAILURE,
AFP_FAILURE,
AFP_KERNEL_DROP,
};
union thdr {
struct tpacket2_hdr *h2;
void *raw;
};
/**
* \brief Structure to hold thread specific variables.
*/
typedef struct AFPThreadVars_
{
/* thread specific socket */
int socket;
/* handle state */
unsigned char afp_state;
/* data link type for the thread */
int datalink;
int cooked;
/* counters */
uint32_t pkts;
uint64_t bytes;
uint32_t errs;
ThreadVars *tv;
TmSlot *slot;
uint8_t *data; /** Per function and thread data */
int datalen; /** Length of per function and thread data */
char iface[AFP_IFACE_NAME_LENGTH];
LiveDevice *livedev;
int down_count;
/* Filter */
char *bpf_filter;
/* socket buffer size */
int buffer_size;
int promisc;
ChecksumValidationMode checksum_mode;
/* IPS stuff */
char out_iface[AFP_IFACE_NAME_LENGTH];
AFPPeer *mpeer;
int flags;
uint16_t capture_kernel_packets;
uint16_t capture_kernel_drops;
int cluster_id;
int cluster_type;
int threads;
int copy_mode;
struct tpacket_req req;
unsigned int tp_hdrlen;
unsigned int ring_buflen;
char *ring_buf;
char *frame_buf;
unsigned int frame_offset;
int ring_size;
} AFPThreadVars;
TmEcode ReceiveAFP(ThreadVars *, Packet *, void *, PacketQueue *, PacketQueue *);
TmEcode ReceiveAFPThreadInit(ThreadVars *, void *, void **);
void ReceiveAFPThreadExitStats(ThreadVars *, void *);
TmEcode ReceiveAFPThreadDeinit(ThreadVars *, void *);
TmEcode ReceiveAFPLoop(ThreadVars *tv, void *data, void *slot);
TmEcode DecodeAFPThreadInit(ThreadVars *, void *, void **);
TmEcode DecodeAFP(ThreadVars *, Packet *, void *, PacketQueue *, PacketQueue *);
TmEcode AFPSetBPFFilter(AFPThreadVars *ptv);
static int AFPGetIfnumByDev(int fd, const char *ifname, int verbose);
static int AFPGetDevFlags(int fd, const char *ifname);
static int AFPDerefSocket(AFPPeer* peer);
static int AFPRefSocket(AFPPeer* peer);
/**
* \brief Registration Function for RecieveAFP.
* \todo Unit tests are needed for this module.
*/
void TmModuleReceiveAFPRegister (void) {
tmm_modules[TMM_RECEIVEAFP].name = "ReceiveAFP";
tmm_modules[TMM_RECEIVEAFP].ThreadInit = ReceiveAFPThreadInit;
tmm_modules[TMM_RECEIVEAFP].Func = NULL;
tmm_modules[TMM_RECEIVEAFP].PktAcqLoop = ReceiveAFPLoop;
tmm_modules[TMM_RECEIVEAFP].ThreadExitPrintStats = ReceiveAFPThreadExitStats;
tmm_modules[TMM_RECEIVEAFP].ThreadDeinit = NULL;
tmm_modules[TMM_RECEIVEAFP].RegisterTests = NULL;
tmm_modules[TMM_RECEIVEAFP].cap_flags = SC_CAP_NET_RAW;
tmm_modules[TMM_RECEIVEAFP].flags = TM_FLAG_RECEIVE_TM;
}
/**
* \defgroup afppeers AFP peers list
*
* AF_PACKET has an IPS mode were interface are peered: packet from
* on interface are sent the peered interface and the other way. The ::AFPPeer
* list is maitaining the list of peers. Each ::AFPPeer is storing the needed
* information to be able to send packet on the interface.
* A element of the list must not be destroyed during the run of Suricata as it
* is used by ::Packet and other threads.
*
* @{
*/
typedef struct AFPPeersList_ {
TAILQ_HEAD(, AFPPeer_) peers; /**< Head of list of fragments. */
int cnt;
int peered;
int turn; /**< Next value for initialisation order */
SC_ATOMIC_DECLARE(int, reached); /**< Counter used to synchronize start */
} AFPPeersList;
/**
* \brief Update the peer.
*
* Update the AFPPeer of a thread ie set new state, socket number
* or iface index.
*
*/
void AFPPeerUpdate(AFPThreadVars *ptv)
{
if (ptv->mpeer == NULL) {
return;
}
(void)SC_ATOMIC_SET(ptv->mpeer->if_idx, AFPGetIfnumByDev(ptv->socket, ptv->iface, 0));
(void)SC_ATOMIC_SET(ptv->mpeer->socket, ptv->socket);
(void)SC_ATOMIC_SET(ptv->mpeer->state, ptv->afp_state);
}
/**
* \brief Clean and free ressource used by an ::AFPPeer
*/
void AFPPeerClean(AFPPeer *peer)
{
if (peer->flags & AFP_SOCK_PROTECT)
SCMutexDestroy(&peer->sock_protect);
SC_ATOMIC_DESTROY(peer->socket);
SC_ATOMIC_DESTROY(peer->if_idx);
SC_ATOMIC_DESTROY(peer->state);
SCFree(peer);
}
AFPPeersList peerslist;
/**
* \brief Init the global list of ::AFPPeer
*/
TmEcode AFPPeersListInit()
{
SCEnter();
TAILQ_INIT(&peerslist.peers);
peerslist.peered = 0;
peerslist.cnt = 0;
peerslist.turn = 0;
SC_ATOMIC_INIT(peerslist.reached);
(void) SC_ATOMIC_SET(peerslist.reached, 0);
SCReturnInt(TM_ECODE_OK);
}
/**
* \brief Check that all ::AFPPeer got a peer
*
* \retval TM_ECODE_FAILED if some threads are not peered or TM_ECODE_OK else.
*/
TmEcode AFPPeersListCheck()
{
#define AFP_PEERS_MAX_TRY 4
#define AFP_PEERS_WAIT 20000
int try = 0;
SCEnter();
while (try < AFP_PEERS_MAX_TRY) {
if (peerslist.cnt != peerslist.peered) {
usleep(AFP_PEERS_WAIT);
} else {
SCReturnInt(TM_ECODE_OK);
}
try++;
}
SCLogError(SC_ERR_AFP_CREATE, "Threads number not equals");
SCReturnInt(TM_ECODE_FAILED);
}
/**
* \brief Declare a new AFP thread to AFP peers list.
*/
TmEcode AFPPeersListAdd(AFPThreadVars *ptv)
{
SCEnter();
AFPPeer *peer = SCMalloc(sizeof(AFPPeer));
AFPPeer *pitem;
int mtu, out_mtu;
if (unlikely(peer == NULL)) {
SCReturnInt(TM_ECODE_FAILED);
}
memset(peer, 0, sizeof(AFPPeer));
SC_ATOMIC_INIT(peer->socket);
SC_ATOMIC_INIT(peer->sock_usage);
SC_ATOMIC_INIT(peer->if_idx);
SC_ATOMIC_INIT(peer->state);
peer->flags = ptv->flags;
peer->turn = peerslist.turn++;
if (peer->flags & AFP_SOCK_PROTECT) {
SCMutexInit(&peer->sock_protect, NULL);
}
(void)SC_ATOMIC_SET(peer->sock_usage, 0);
(void)SC_ATOMIC_SET(peer->state, AFP_STATE_DOWN);
strlcpy(peer->iface, ptv->iface, AFP_IFACE_NAME_LENGTH);
ptv->mpeer = peer;
/* add element to iface list */
TAILQ_INSERT_TAIL(&peerslist.peers, peer, next);
if (ptv->copy_mode != AFP_COPY_MODE_NONE) {
peerslist.cnt++;
/* Iter to find a peer */
TAILQ_FOREACH(pitem, &peerslist.peers, next) {
if (pitem->peer)
continue;
if (strcmp(pitem->iface, ptv->out_iface))
continue;
peer->peer = pitem;
pitem->peer = peer;
mtu = GetIfaceMTU(ptv->iface);
out_mtu = GetIfaceMTU(ptv->out_iface);
if (mtu != out_mtu) {
SCLogError(SC_ERR_AFP_CREATE,
"MTU on %s (%d) and %s (%d) are not equal, "
"transmission of packets bigger than %d will fail.",
ptv->iface, mtu,
ptv->out_iface, out_mtu,
(out_mtu > mtu) ? mtu : out_mtu);
}
peerslist.peered += 2;
break;
}
}
AFPPeerUpdate(ptv);
SCReturnInt(TM_ECODE_OK);
}
int AFPPeersListWaitTurn(AFPPeer *peer)
{
/* If turn is zero, we already have started threads once */
if (peerslist.turn == 0)
return 0;
if (peer->turn == SC_ATOMIC_GET(peerslist.reached))
return 0;
return 1;
}
void AFPPeersListReachedInc()
{
if (peerslist.turn == 0)
return;
if (SC_ATOMIC_ADD(peerslist.reached, 1) == peerslist.turn) {
SCLogInfo("All AFP capture threads are running.");
(void)SC_ATOMIC_SET(peerslist.reached, 0);
/* Set turn to 0 to skip syncrhonization when ReceiveAFPLoop is
* restarted.
*/
peerslist.turn = 0;
}
}
/**
* \brief Clean the global peers list.
*/
void AFPPeersListClean()
{
AFPPeer *pitem;
while ((pitem = TAILQ_FIRST(&peerslist.peers))) {
TAILQ_REMOVE(&peerslist.peers, pitem, next);
AFPPeerClean(pitem);
}
}
/**
* @}
*/
/**
* \brief Registration Function for DecodeAFP.
* \todo Unit tests are needed for this module.
*/
void TmModuleDecodeAFPRegister (void) {
tmm_modules[TMM_DECODEAFP].name = "DecodeAFP";
tmm_modules[TMM_DECODEAFP].ThreadInit = DecodeAFPThreadInit;
tmm_modules[TMM_DECODEAFP].Func = DecodeAFP;
tmm_modules[TMM_DECODEAFP].ThreadExitPrintStats = NULL;
tmm_modules[TMM_DECODEAFP].ThreadDeinit = NULL;
tmm_modules[TMM_DECODEAFP].RegisterTests = NULL;
tmm_modules[TMM_DECODEAFP].cap_flags = 0;
tmm_modules[TMM_DECODEAFP].flags = TM_FLAG_DECODE_TM;
}
static int AFPCreateSocket(AFPThreadVars *ptv, char *devname, int verbose);
static inline void AFPDumpCounters(AFPThreadVars *ptv)
{
#ifdef PACKET_STATISTICS
struct tpacket_stats kstats;
socklen_t len = sizeof (struct tpacket_stats);
if (getsockopt(ptv->socket, SOL_PACKET, PACKET_STATISTICS,
&kstats, &len) > -1) {
SCLogDebug("(%s) Kernel: Packets %" PRIu32 ", dropped %" PRIu32 "",
ptv->tv->name,
kstats.tp_packets, kstats.tp_drops);
SCPerfCounterAddUI64(ptv->capture_kernel_packets, ptv->tv->sc_perf_pca, kstats.tp_packets);
SCPerfCounterAddUI64(ptv->capture_kernel_drops, ptv->tv->sc_perf_pca, kstats.tp_drops);
(void) SC_ATOMIC_ADD(ptv->livedev->drop, kstats.tp_drops);
}
#endif
}
/**
* \brief AF packet read function.
*
* This function fills
* From here the packets are picked up by the DecodeAFP thread.
*
* \param user pointer to AFPThreadVars
* \retval TM_ECODE_FAILED on failure and TM_ECODE_OK on success
*/
int AFPRead(AFPThreadVars *ptv)
{
Packet *p = NULL;
/* XXX should try to use read that get directly to packet */
int offset = 0;
int caplen;
struct sockaddr_ll from;
struct iovec iov;
struct msghdr msg;
struct cmsghdr *cmsg;
union {
struct cmsghdr cmsg;
char buf[CMSG_SPACE(sizeof(struct tpacket_auxdata))];
} cmsg_buf;
unsigned char aux_checksum = 0;
msg.msg_name = &from;
msg.msg_namelen = sizeof(from);
msg.msg_iov = &iov;
msg.msg_iovlen = 1;
msg.msg_control = &cmsg_buf;
msg.msg_controllen = sizeof(cmsg_buf);
msg.msg_flags = 0;
if (ptv->cooked)
offset = SLL_HEADER_LEN;
else
offset = 0;
iov.iov_len = ptv->datalen - offset;
iov.iov_base = ptv->data + offset;
caplen = recvmsg(ptv->socket, &msg, MSG_TRUNC);
if (caplen < 0) {
SCLogWarning(SC_ERR_AFP_READ, "recvmsg failed with error code %" PRId32,
errno);
SCReturnInt(AFP_READ_FAILURE);
}
p = PacketGetFromQueueOrAlloc();
if (p == NULL) {
SCReturnInt(AFP_FAILURE);
}
PKT_SET_SRC(p, PKT_SRC_WIRE);
/* get timestamp of packet via ioctl */
if (ioctl(ptv->socket, SIOCGSTAMP, &p->ts) == -1) {
SCLogWarning(SC_ERR_AFP_READ, "recvmsg failed with error code %" PRId32,
errno);
TmqhOutputPacketpool(ptv->tv, p);
SCReturnInt(AFP_READ_FAILURE);
}
ptv->pkts++;
ptv->bytes += caplen + offset;
(void) SC_ATOMIC_ADD(ptv->livedev->pkts, 1);
p->livedev = ptv->livedev;
/* add forged header */
if (ptv->cooked) {
SllHdr * hdrp = (SllHdr *)ptv->data;
/* XXX this is minimalist, but this seems enough */
hdrp->sll_protocol = from.sll_protocol;
}
p->datalink = ptv->datalink;
SET_PKT_LEN(p, caplen + offset);
if (PacketCopyData(p, ptv->data, GET_PKT_LEN(p)) == -1) {
TmqhOutputPacketpool(ptv->tv, p);
SCReturnInt(AFP_FAILURE);
}
SCLogDebug("pktlen: %" PRIu32 " (pkt %p, pkt data %p)",
GET_PKT_LEN(p), p, GET_PKT_DATA(p));
/* We only check for checksum disable */
if (ptv->checksum_mode == CHECKSUM_VALIDATION_DISABLE) {
p->flags |= PKT_IGNORE_CHECKSUM;
} else if (ptv->checksum_mode == CHECKSUM_VALIDATION_AUTO) {
if (ptv->livedev->ignore_checksum) {
p->flags |= PKT_IGNORE_CHECKSUM;
} else if (ChecksumAutoModeCheck(ptv->pkts,
SC_ATOMIC_GET(ptv->livedev->pkts),
SC_ATOMIC_GET(ptv->livedev->invalid_checksums))) {
ptv->livedev->ignore_checksum = 1;
p->flags |= PKT_IGNORE_CHECKSUM;
}
} else {
aux_checksum = 1;
}
/* List is NULL if we don't have activated auxiliary data */
for (cmsg = CMSG_FIRSTHDR(&msg); cmsg; cmsg = CMSG_NXTHDR(&msg, cmsg)) {
struct tpacket_auxdata *aux;
if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct tpacket_auxdata)) ||
cmsg->cmsg_level != SOL_PACKET ||
cmsg->cmsg_type != PACKET_AUXDATA)
continue;
aux = (struct tpacket_auxdata *)CMSG_DATA(cmsg);
if (aux_checksum && (aux->tp_status & TP_STATUS_CSUMNOTREADY)) {
p->flags |= PKT_IGNORE_CHECKSUM;
}
break;
}
if (TmThreadsSlotProcessPkt(ptv->tv, ptv->slot, p) != TM_ECODE_OK) {
TmqhOutputPacketpool(ptv->tv, p);
SCReturnInt(AFP_FAILURE);
}
SCReturnInt(AFP_READ_OK);
}
TmEcode AFPWritePacket(Packet *p)
{
struct sockaddr_ll socket_address;
int socket;
if (p->afp_v.copy_mode == AFP_COPY_MODE_IPS) {
if (p->action & ACTION_DROP) {
return TM_ECODE_OK;
}
}
if (SC_ATOMIC_GET(p->afp_v.peer->state) == AFP_STATE_DOWN)
return TM_ECODE_OK;
if (p->ethh == NULL) {
SCLogWarning(SC_ERR_INVALID_VALUE, "Should have an Ethernet header");
return TM_ECODE_FAILED;
}
/* Index of the network device */
socket_address.sll_ifindex = SC_ATOMIC_GET(p->afp_v.peer->if_idx);
/* Address length*/
socket_address.sll_halen = ETH_ALEN;
/* Destination MAC */
memcpy(socket_address.sll_addr, p->ethh, 6);
/* Send packet, locking the socket if necessary */
if (p->afp_v.peer->flags & AFP_SOCK_PROTECT)
SCMutexLock(&p->afp_v.peer->sock_protect);
socket = SC_ATOMIC_GET(p->afp_v.peer->socket);
if (sendto(socket, GET_PKT_DATA(p), GET_PKT_LEN(p), 0,
(struct sockaddr*) &socket_address,
sizeof(struct sockaddr_ll)) < 0) {
SCLogWarning(SC_ERR_SOCKET, "Sending packet failed on socket %d: %s",
socket,
strerror(errno));
if (p->afp_v.peer->flags & AFP_SOCK_PROTECT)
SCMutexUnlock(&p->afp_v.peer->sock_protect);
return TM_ECODE_FAILED;
}
if (p->afp_v.peer->flags & AFP_SOCK_PROTECT)
SCMutexUnlock(&p->afp_v.peer->sock_protect);
return TM_ECODE_OK;
}
TmEcode AFPReleaseDataFromRing(ThreadVars *t, Packet *p)
{
int ret = TM_ECODE_OK;
/* Need to be in copy mode and need to detect early release
where Ethernet header could not be set (and pseudo packet) */
if ((p->afp_v.copy_mode != AFP_COPY_MODE_NONE) && !PKT_IS_PSEUDOPKT(p)) {
ret = AFPWritePacket(p);
}
if (AFPDerefSocket(p->afp_v.mpeer) == 0)
goto cleanup;
if (p->afp_v.relptr) {
union thdr h;
h.raw = p->afp_v.relptr;
h.h2->tp_status = TP_STATUS_KERNEL;
}
cleanup:
AFPV_CLEANUP(&p->afp_v);
return ret;
}
/**
* \brief AF packet read function for ring
*
* This function fills
* From here the packets are picked up by the DecodeAFP thread.
*
* \param user pointer to AFPThreadVars
* \retval TM_ECODE_FAILED on failure and TM_ECODE_OK on success
*/
int AFPReadFromRing(AFPThreadVars *ptv)
{
Packet *p = NULL;
union thdr h;
struct sockaddr_ll *from;
uint8_t emergency_flush = 0;
int read_pkts = 0;
int loop_start = -1;
/* Loop till we have packets available */
while (1) {
if (unlikely(suricata_ctl_flags != 0)) {
break;
}
/* Read packet from ring */
h.raw = (((union thdr **)ptv->frame_buf)[ptv->frame_offset]);
if (h.raw == NULL) {
SCReturnInt(AFP_FAILURE);
}
if (h.h2->tp_status == TP_STATUS_KERNEL) {
if (read_pkts == 0) {
if (loop_start == -1) {
loop_start = ptv->frame_offset;
} else if (unlikely(loop_start == (int)ptv->frame_offset)) {
SCReturnInt(AFP_READ_OK);
}
if (++ptv->frame_offset >= ptv->req.tp_frame_nr) {
ptv->frame_offset = 0;
}
continue;
}
if ((emergency_flush) && (ptv->flags & AFP_EMERGENCY_MODE)) {
SCReturnInt(AFP_KERNEL_DROP);
} else {
SCReturnInt(AFP_READ_OK);
}
}
read_pkts++;
loop_start = -1;
/* Our packet is still used by suricata, we exit read loop to
* gain some time */
if (h.h2->tp_status & TP_STATUS_USER_BUSY) {
SCReturnInt(AFP_READ_OK);
}
if ((ptv->flags & AFP_EMERGENCY_MODE) && (emergency_flush == 1)) {
h.h2->tp_status = TP_STATUS_KERNEL;
goto next_frame;
}
p = PacketGetFromQueueOrAlloc();
if (p == NULL) {
SCReturnInt(AFP_FAILURE);
}
PKT_SET_SRC(p, PKT_SRC_WIRE);
/* Suricata will treat packet so telling it is busy, this
* status will be reset to 0 (ie TP_STATUS_KERNEL) in the release
* function. */
h.h2->tp_status |= TP_STATUS_USER_BUSY;
from = (void *)h.raw + TPACKET_ALIGN(ptv->tp_hdrlen);
ptv->pkts++;
ptv->bytes += h.h2->tp_len;
(void) SC_ATOMIC_ADD(ptv->livedev->pkts, 1);
p->livedev = ptv->livedev;
/* add forged header */
if (ptv->cooked) {
SllHdr * hdrp = (SllHdr *)ptv->data;
/* XXX this is minimalist, but this seems enough */
hdrp->sll_protocol = from->sll_protocol;
}
p->datalink = ptv->datalink;
if (h.h2->tp_len > h.h2->tp_snaplen) {
SCLogDebug("Packet length (%d) > snaplen (%d), truncating",
h.h2->tp_len, h.h2->tp_snaplen);
}
if (ptv->flags & AFP_ZERO_COPY) {
if (PacketSetData(p, (unsigned char*)h.raw + h.h2->tp_mac, h.h2->tp_snaplen) == -1) {
TmqhOutputPacketpool(ptv->tv, p);
SCReturnInt(AFP_FAILURE);
} else {
p->afp_v.relptr = h.raw;
p->ReleaseData = AFPReleaseDataFromRing;
p->afp_v.mpeer = ptv->mpeer;
AFPRefSocket(ptv->mpeer);
p->afp_v.copy_mode = ptv->copy_mode;
if (p->afp_v.copy_mode != AFP_COPY_MODE_NONE) {
p->afp_v.peer = ptv->mpeer->peer;
} else {
p->afp_v.peer = NULL;
}
}
} else {
if (PacketCopyData(p, (unsigned char*)h.raw + h.h2->tp_mac, h.h2->tp_snaplen) == -1) {
TmqhOutputPacketpool(ptv->tv, p);
SCReturnInt(AFP_FAILURE);
}
}
/* Timestamp */
p->ts.tv_sec = h.h2->tp_sec;
p->ts.tv_usec = h.h2->tp_nsec/1000;
SCLogDebug("pktlen: %" PRIu32 " (pkt %p, pkt data %p)",
GET_PKT_LEN(p), p, GET_PKT_DATA(p));
/* We only check for checksum disable */
if (ptv->checksum_mode == CHECKSUM_VALIDATION_DISABLE) {
p->flags |= PKT_IGNORE_CHECKSUM;
} else if (ptv->checksum_mode == CHECKSUM_VALIDATION_AUTO) {
if (ptv->livedev->ignore_checksum) {
p->flags |= PKT_IGNORE_CHECKSUM;
} else if (ChecksumAutoModeCheck(ptv->pkts,
SC_ATOMIC_GET(ptv->livedev->pkts),
SC_ATOMIC_GET(ptv->livedev->invalid_checksums))) {
ptv->livedev->ignore_checksum = 1;
p->flags |= PKT_IGNORE_CHECKSUM;
}
} else {
if (h.h2->tp_status & TP_STATUS_CSUMNOTREADY) {
p->flags |= PKT_IGNORE_CHECKSUM;
}
}
if (h.h2->tp_status & TP_STATUS_LOSING) {
emergency_flush = 1;
AFPDumpCounters(ptv);
}
/* release frame if not in zero copy mode */
if (!(ptv->flags & AFP_ZERO_COPY)) {
h.h2->tp_status = TP_STATUS_KERNEL;
}
if (TmThreadsSlotProcessPkt(ptv->tv, ptv->slot, p) != TM_ECODE_OK) {
h.h2->tp_status = TP_STATUS_KERNEL;
if (++ptv->frame_offset >= ptv->req.tp_frame_nr) {
ptv->frame_offset = 0;
}
TmqhOutputPacketpool(ptv->tv, p);
SCReturnInt(AFP_FAILURE);
}
next_frame:
if (++ptv->frame_offset >= ptv->req.tp_frame_nr) {
ptv->frame_offset = 0;
/* Get out of loop to be sure we will reach maintenance tasks */
SCReturnInt(AFP_READ_OK);
}
}
SCReturnInt(AFP_READ_OK);
}
/**
* \brief Reference socket
*
* \retval O in case of failure, 1 in case of success
*/
static int AFPRefSocket(AFPPeer* peer)
{
if (unlikely(peer == NULL))
return 0;
(void)SC_ATOMIC_ADD(peer->sock_usage, 1);
return 1;
}
/**
* \brief Dereference socket
*
* \retval 1 if socket is still alive, 0 if not
*/
static int AFPDerefSocket(AFPPeer* peer)
{
if (SC_ATOMIC_SUB(peer->sock_usage, 1) == 0) {
if (SC_ATOMIC_GET(peer->state) == AFP_STATE_DOWN) {
SCLogInfo("Cleaning socket connected to '%s'", peer->iface);
close(SC_ATOMIC_GET(peer->socket));
return 0;
}
}
return 1;
}
void AFPSwitchState(AFPThreadVars *ptv, int state)
{
ptv->afp_state = state;
ptv->down_count = 0;
AFPPeerUpdate(ptv);
/* Do cleaning if switching to down state */
if (state == AFP_STATE_DOWN) {
if (ptv->frame_buf) {
/* only used in reading phase, we can free it */
SCFree(ptv->frame_buf);
ptv->frame_buf = NULL;
}
if (ptv->socket != -1) {
/* we need to wait for all packets to return data */
if (SC_ATOMIC_SUB(ptv->mpeer->sock_usage, 1) == 0) {
SCLogInfo("Cleaning socket connected to '%s'", ptv->iface);
close(ptv->socket);
ptv->socket = -1;
}
}
}
if (state == AFP_STATE_UP) {
(void)SC_ATOMIC_SET(ptv->mpeer->sock_usage, 1);
}
}
/**
* \brief Try to reopen socket
*
* \retval 0 in case of success, negative if error occurs or a condition
* is not met.
*/
static int AFPTryReopen(AFPThreadVars *ptv)
{
int afp_activate_r;
ptv->down_count++;
/* Don't reconnect till we have packet that did not release data */
if (SC_ATOMIC_GET(ptv->mpeer->sock_usage) != 0) {
return -1;
}
afp_activate_r = AFPCreateSocket(ptv, ptv->iface, 0);
if (afp_activate_r != 0) {
if (ptv->down_count % AFP_DOWN_COUNTER_INTERVAL == 0) {
SCLogWarning(SC_ERR_AFP_CREATE, "Can not open iface '%s'",
ptv->iface);
}
return afp_activate_r;
}
SCLogInfo("Interface '%s' is back", ptv->iface);
return 0;
}
/**
* \brief Main AF_PACKET reading Loop function
*/
TmEcode ReceiveAFPLoop(ThreadVars *tv, void *data, void *slot)
{
SCEnter();
uint16_t packet_q_len = 0;
AFPThreadVars *ptv = (AFPThreadVars *)data;
struct pollfd fds;
int r;
TmSlot *s = (TmSlot *)slot;
time_t last_dump = 0;
struct timeval current_time;
ptv->slot = s->slot_next;
if (ptv->afp_state == AFP_STATE_DOWN) {
/* Wait for our turn, threads before us must have opened the socket */
while (AFPPeersListWaitTurn(ptv->mpeer)) {
usleep(1000);
}
r = AFPCreateSocket(ptv, ptv->iface, 1);
if (r < 0) {
SCLogError(SC_ERR_AFP_CREATE, "Couldn't init AF_PACKET socket");
}
AFPPeersListReachedInc();
}
if (ptv->afp_state == AFP_STATE_UP) {
SCLogInfo("Thread %s using socket %d", tv->name, ptv->socket);
}
fds.fd = ptv->socket;
fds.events = POLLIN;
while (1) {
/* Start by checking the state of our interface */
if (unlikely(ptv->afp_state == AFP_STATE_DOWN)) {
int dbreak = 0;
do {
usleep(AFP_RECONNECT_TIMEOUT);
if (suricata_ctl_flags != 0) {
dbreak = 1;
break;
}
r = AFPTryReopen(ptv);
fds.fd = ptv->socket;
} while (r < 0);
if (dbreak == 1)
break;
}
/* make sure we have at least one packet in the packet pool, to prevent
* us from alloc'ing packets at line rate */
do {
packet_q_len = PacketPoolSize();
if (unlikely(packet_q_len == 0)) {
PacketPoolWait();
}
} while (packet_q_len == 0);
r = poll(&fds, 1, POLL_TIMEOUT);
if (suricata_ctl_flags != 0) {
break;
}
if (r > 0 &&
(fds.revents & (POLLHUP|POLLRDHUP|POLLERR|POLLNVAL))) {
if (fds.revents & (POLLHUP | POLLRDHUP)) {
AFPSwitchState(ptv, AFP_STATE_DOWN);
continue;
} else if (fds.revents & POLLERR) {
char c;
/* Do a recv to get errno */
if (recv(ptv->socket, &c, sizeof c, MSG_PEEK) != -1)
continue; /* what, no error? */
SCLogError(SC_ERR_AFP_READ,
"Error reading data from iface '%s': (%d" PRIu32 ") %s",
ptv->iface, errno, strerror(errno));
AFPSwitchState(ptv, AFP_STATE_DOWN);
continue;
} else if (fds.revents & POLLNVAL) {
SCLogError(SC_ERR_AFP_READ, "Invalid polling request");
AFPSwitchState(ptv, AFP_STATE_DOWN);
continue;
}
} else if (r > 0) {
if (ptv->flags & AFP_RING_MODE) {
r = AFPReadFromRing(ptv);
} else {
/* AFPRead will call TmThreadsSlotProcessPkt on read packets */
r = AFPRead(ptv);
}
switch (r) {
case AFP_READ_FAILURE:
/* AFPRead in error: best to reset the socket */
SCLogError(SC_ERR_AFP_READ,
"AFPRead error reading data from iface '%s': (%d" PRIu32 ") %s",
ptv->iface, errno, strerror(errno));
AFPSwitchState(ptv, AFP_STATE_DOWN);
continue;
case AFP_FAILURE:
AFPSwitchState(ptv, AFP_STATE_DOWN);
SCReturnInt(TM_ECODE_FAILED);
break;
case AFP_READ_OK:
/* Trigger one dump of stats every second */
TimeGet(&current_time);
if (current_time.tv_sec != last_dump) {
AFPDumpCounters(ptv);
last_dump = current_time.tv_sec;
}
break;
case AFP_KERNEL_DROP:
AFPDumpCounters(ptv);
break;
}
} else if ((r < 0) && (errno != EINTR)) {
SCLogError(SC_ERR_AFP_READ, "Error reading data from iface '%s': (%d" PRIu32 ") %s",
ptv->iface,
errno, strerror(errno));
AFPSwitchState(ptv, AFP_STATE_DOWN);
continue;
}
SCPerfSyncCountersIfSignalled(tv, 0);
}
SCReturnInt(TM_ECODE_OK);
}
static int AFPGetDevFlags(int fd, const char *ifname)
{
struct ifreq ifr;
memset(&ifr, 0, sizeof(ifr));
strlcpy(ifr.ifr_name, ifname, sizeof(ifr.ifr_name));
if (ioctl(fd, SIOCGIFFLAGS, &ifr) == -1) {
SCLogError(SC_ERR_AFP_CREATE, "Unable to find type for iface \"%s\": %s",
ifname, strerror(errno));
return -1;
}
return ifr.ifr_flags;
}
static int AFPGetIfnumByDev(int fd, const char *ifname, int verbose)
{
struct ifreq ifr;
memset(&ifr, 0, sizeof(ifr));
strlcpy(ifr.ifr_name, ifname, sizeof(ifr.ifr_name));
if (ioctl(fd, SIOCGIFINDEX, &ifr) == -1) {
if (verbose)
SCLogError(SC_ERR_AFP_CREATE, "Unable to find iface %s: %s",
ifname, strerror(errno));
return -1;
}
return ifr.ifr_ifindex;
}
static int AFPGetDevLinktype(int fd, const char *ifname)
{
struct ifreq ifr;
memset(&ifr, 0, sizeof(ifr));
strlcpy(ifr.ifr_name, ifname, sizeof(ifr.ifr_name));
if (ioctl(fd, SIOCGIFHWADDR, &ifr) == -1) {
SCLogError(SC_ERR_AFP_CREATE, "Unable to find type for iface \"%s\": %s",
ifname, strerror(errno));
return -1;
}
switch (ifr.ifr_hwaddr.sa_family) {
case ARPHRD_LOOPBACK:
return LINKTYPE_ETHERNET;
case ARPHRD_PPP:
return LINKTYPE_RAW;
default:
return ifr.ifr_hwaddr.sa_family;
}
}
static int AFPComputeRingParams(AFPThreadVars *ptv, int order)
{
/* Compute structure:
Target is to store all pending packets
with a size equal to MTU + auxdata
And we keep a decent number of block
To do so:
Compute frame_size (aligned to be able to fit in block
Check which block size we need. Blocksize is a 2^n * pagesize
We then need to get order, big enough to have
frame_size < block size
Find number of frame per block (divide)
Fill in packet_req
Compute frame size:
described in packet_mmap.txt
dependant on snaplen (need to use a variable ?)
snaplen: MTU ?
tp_hdrlen determine_version in daq_afpacket
in V1: sizeof(struct tpacket_hdr);
in V2: val in getsockopt(instance->fd, SOL_PACKET, PACKET_HDRLEN, &val, &len)
frame size: TPACKET_ALIGN(snaplen + TPACKET_ALIGN(TPACKET_ALIGN(tp_hdrlen) + sizeof(struct sockaddr_ll) + ETH_HLEN) - ETH_HLEN);
*/
int tp_hdrlen = sizeof(struct tpacket_hdr);
int snaplen = default_packet_size;
ptv->req.tp_frame_size = TPACKET_ALIGN(snaplen +TPACKET_ALIGN(TPACKET_ALIGN(tp_hdrlen) + sizeof(struct sockaddr_ll) + ETH_HLEN) - ETH_HLEN);
ptv->req.tp_block_size = getpagesize() << order;
int frames_per_block = ptv->req.tp_block_size / ptv->req.tp_frame_size;
if (frames_per_block == 0) {
SCLogInfo("frame size to big");
return -1;
}
ptv->req.tp_frame_nr = ptv->ring_size;
ptv->req.tp_block_nr = ptv->req.tp_frame_nr / frames_per_block + 1;
/* exact division */
ptv->req.tp_frame_nr = ptv->req.tp_block_nr * frames_per_block;
SCLogInfo("AF_PACKET RX Ring params: block_size=%d block_nr=%d frame_size=%d frame_nr=%d",
ptv->req.tp_block_size, ptv->req.tp_block_nr,
ptv->req.tp_frame_size, ptv->req.tp_frame_nr);
return 1;
}
static int AFPCreateSocket(AFPThreadVars *ptv, char *devname, int verbose)
{
int r;
struct packet_mreq sock_params;
struct sockaddr_ll bind_address;
int order;
unsigned int i;
int if_idx;
/* open socket */
ptv->socket = socket(AF_PACKET, SOCK_RAW, htons(ETH_P_ALL));
if (ptv->socket == -1) {
SCLogError(SC_ERR_AFP_CREATE, "Couldn't create a AF_PACKET socket, error %s", strerror(errno));
goto error;
}
if_idx = AFPGetIfnumByDev(ptv->socket, devname, verbose);
/* bind socket */
memset(&bind_address, 0, sizeof(bind_address));
bind_address.sll_family = AF_PACKET;
bind_address.sll_protocol = htons(ETH_P_ALL);
bind_address.sll_ifindex = if_idx;
if (bind_address.sll_ifindex == -1) {
if (verbose)
SCLogError(SC_ERR_AFP_CREATE, "Couldn't find iface %s", devname);
goto socket_err;
}
if (ptv->promisc != 0) {
/* Force promiscuous mode */
memset(&sock_params, 0, sizeof(sock_params));
sock_params.mr_type = PACKET_MR_PROMISC;
sock_params.mr_ifindex = bind_address.sll_ifindex;
r = setsockopt(ptv->socket, SOL_PACKET, PACKET_ADD_MEMBERSHIP,(void *)&sock_params, sizeof(sock_params));
if (r < 0) {
SCLogError(SC_ERR_AFP_CREATE,
"Couldn't switch iface %s to promiscuous, error %s",
devname, strerror(errno));
goto frame_err;
}
}
if (ptv->checksum_mode == CHECKSUM_VALIDATION_KERNEL) {
int val = 1;
if (setsockopt(ptv->socket, SOL_PACKET, PACKET_AUXDATA, &val,
sizeof(val)) == -1 && errno != ENOPROTOOPT) {
SCLogWarning(SC_ERR_NO_AF_PACKET,
"'kernel' checksum mode not supported, failling back to full mode.");
ptv->checksum_mode = CHECKSUM_VALIDATION_ENABLE;
}
}
/* set socket recv buffer size */
if (ptv->buffer_size != 0) {
/*
* Set the socket buffer size to the specified value.
*/
SCLogInfo("Setting AF_PACKET socket buffer to %d", ptv->buffer_size);
if (setsockopt(ptv->socket, SOL_SOCKET, SO_RCVBUF,
&ptv->buffer_size,
sizeof(ptv->buffer_size)) == -1) {
SCLogError(SC_ERR_AFP_CREATE,
"Couldn't set buffer size to %d on iface %s, error %s",
ptv->buffer_size, devname, strerror(errno));
goto frame_err;
}
}
r = bind(ptv->socket, (struct sockaddr *)&bind_address, sizeof(bind_address));
if (r < 0) {
if (verbose) {
if (errno == ENETDOWN) {
SCLogError(SC_ERR_AFP_CREATE,
"Couldn't bind AF_PACKET socket, iface %s is down",
devname);
} else {
SCLogError(SC_ERR_AFP_CREATE,
"Couldn't bind AF_PACKET socket to iface %s, error %s",
devname, strerror(errno));
}
}
goto frame_err;
}
int if_flags = AFPGetDevFlags(ptv->socket, ptv->iface);
if (if_flags == -1) {
if (verbose) {
SCLogError(SC_ERR_AFP_READ,
"Can not acces to interface '%s'",
ptv->iface);
}
goto frame_err;
}
if ((if_flags & IFF_UP) == 0) {
if (verbose) {
SCLogError(SC_ERR_AFP_READ,
"Interface '%s' is down",
ptv->iface);
}
goto frame_err;
}
if (ptv->flags & AFP_RING_MODE) {
int val = TPACKET_V2;
unsigned int len = sizeof(val);
if (getsockopt(ptv->socket, SOL_PACKET, PACKET_HDRLEN, &val, &len) < 0) {
if (errno == ENOPROTOOPT) {
SCLogError(SC_ERR_AFP_CREATE,
"Too old kernel giving up (need 2.6.27 at least)");
}
SCLogError(SC_ERR_AFP_CREATE, "Error when retrieving packet header len");
goto socket_err;
}
ptv->tp_hdrlen = val;
val = TPACKET_V2;
if (setsockopt(ptv->socket, SOL_PACKET, PACKET_VERSION, &val,
sizeof(val)) < 0) {
SCLogError(SC_ERR_AFP_CREATE,
"Can't activate TPACKET_V2 on packet socket: %s",
strerror(errno));
goto socket_err;
}
/* Allocate RX ring */
#define DEFAULT_ORDER 3
for (order = DEFAULT_ORDER; order >= 0; order--) {
if (AFPComputeRingParams(ptv, order) != 1) {
SCLogInfo("Ring parameter are incorrect. Please correct the devel");
}
r = setsockopt(ptv->socket, SOL_PACKET, PACKET_RX_RING, (void *) &ptv->req, sizeof(ptv->req));
if (r < 0) {
if (errno == ENOMEM) {
SCLogInfo("Memory issue with ring parameters. Retrying.");
continue;
}
SCLogError(SC_ERR_MEM_ALLOC,
"Unable to allocate RX Ring for iface %s: (%d) %s",
devname,
errno,
strerror(errno));
goto socket_err;
} else {
break;
}
}
if (order < 0) {
SCLogError(SC_ERR_MEM_ALLOC,
"Unable to allocate RX Ring for iface %s (order 0 failed)",
devname);
goto socket_err;
}
/* Allocate the Ring */
ptv->ring_buflen = ptv->req.tp_block_nr * ptv->req.tp_block_size;
ptv->ring_buf = mmap(0, ptv->ring_buflen, PROT_READ|PROT_WRITE,
MAP_SHARED, ptv->socket, 0);
if (ptv->ring_buf == MAP_FAILED) {
SCLogError(SC_ERR_MEM_ALLOC, "Unable to mmap");
goto socket_err;
}
/* allocate a ring for each frame header pointer*/
ptv->frame_buf = SCMalloc(ptv->req.tp_frame_nr * sizeof (union thdr *));
if (ptv->frame_buf == NULL) {
SCLogError(SC_ERR_MEM_ALLOC, "Unable to allocate frame buf");
goto mmap_err;
}
memset(ptv->frame_buf, 0, ptv->req.tp_frame_nr * sizeof (union thdr *));
/* fill the header ring with proper frame ptr*/
ptv->frame_offset = 0;
for (i = 0; i < ptv->req.tp_block_nr; ++i) {
void *base = &ptv->ring_buf[i * ptv->req.tp_block_size];
unsigned int j;
for (j = 0; j < ptv->req.tp_block_size / ptv->req.tp_frame_size; ++j, ++ptv->frame_offset) {
(((union thdr **)ptv->frame_buf)[ptv->frame_offset]) = base;
base += ptv->req.tp_frame_size;
}
}
ptv->frame_offset = 0;
}
SCLogInfo("Using interface '%s' via socket %d", (char *)devname, ptv->socket);
#ifdef HAVE_PACKET_FANOUT
/* add binded socket to fanout group */
if (ptv->threads > 1) {
uint32_t option = 0;
uint16_t mode = ptv->cluster_type;
uint16_t id = ptv->cluster_id;
option = (mode << 16) | (id & 0xffff);
r = setsockopt(ptv->socket, SOL_PACKET, PACKET_FANOUT,(void *)&option, sizeof(option));
if (r < 0) {
SCLogError(SC_ERR_AFP_CREATE,
"Coudn't set fanout mode, error %s",
strerror(errno));
goto frame_err;
}
}
#endif
ptv->datalink = AFPGetDevLinktype(ptv->socket, ptv->iface);
switch (ptv->datalink) {
case ARPHRD_PPP:
case ARPHRD_ATM:
ptv->cooked = 1;
}
TmEcode rc;
rc = AFPSetBPFFilter(ptv);
if (rc == TM_ECODE_FAILED) {
SCLogError(SC_ERR_AFP_CREATE, "Set AF_PACKET bpf filter \"%s\" failed.", ptv->bpf_filter);
goto frame_err;
}
/* Init is ok */
AFPSwitchState(ptv, AFP_STATE_UP);
return 0;
frame_err:
if (ptv->frame_buf)
SCFree(ptv->frame_buf);
mmap_err:
/* Packet mmap does the cleaning when socket is closed */
socket_err:
close(ptv->socket);
ptv->socket = -1;
error:
return -1;
}
TmEcode AFPSetBPFFilter(AFPThreadVars *ptv)
{
struct bpf_program filter;
struct sock_fprog fcode;
int rc;
if (!ptv->bpf_filter)
return TM_ECODE_OK;
SCMutexLock(&afpacket_bpf_set_filter_lock);
SCLogInfo("Using BPF '%s' on iface '%s'",
ptv->bpf_filter,
ptv->iface);
if (pcap_compile_nopcap(default_packet_size, /* snaplen_arg */
ptv->datalink, /* linktype_arg */
&filter, /* program */
ptv->bpf_filter, /* const char *buf */
0, /* optimize */
0 /* mask */
) == -1) {
SCLogError(SC_ERR_AFP_CREATE, "Filter compilation failed.");
SCMutexUnlock(&afpacket_bpf_set_filter_lock);
return TM_ECODE_FAILED;
}
SCMutexUnlock(&afpacket_bpf_set_filter_lock);
if (filter.bf_insns == NULL) {
SCLogError(SC_ERR_AFP_CREATE, "Filter badly setup.");
return TM_ECODE_FAILED;
}
fcode.len = filter.bf_len;
fcode.filter = (struct sock_filter*)filter.bf_insns;
rc = setsockopt(ptv->socket, SOL_SOCKET, SO_ATTACH_FILTER, &fcode, sizeof(fcode));
if(rc == -1) {
SCLogError(SC_ERR_AFP_CREATE, "Failed to attach filter: %s", strerror(errno));
return TM_ECODE_FAILED;
}
SCMutexUnlock(&afpacket_bpf_set_filter_lock);
return TM_ECODE_OK;
}
/**
* \brief Init function for ReceiveAFP.
*
* \param tv pointer to ThreadVars
* \param initdata pointer to the interface passed from the user
* \param data pointer gets populated with AFPThreadVars
*
* \todo Create a general AFP setup function.
*/
TmEcode ReceiveAFPThreadInit(ThreadVars *tv, void *initdata, void **data) {
SCEnter();
AFPIfaceConfig *afpconfig = initdata;
if (initdata == NULL) {
SCLogError(SC_ERR_INVALID_ARGUMENT, "initdata == NULL");
SCReturnInt(TM_ECODE_FAILED);
}
AFPThreadVars *ptv = SCMalloc(sizeof(AFPThreadVars));
if (unlikely(ptv == NULL)) {
afpconfig->DerefFunc(afpconfig);
SCReturnInt(TM_ECODE_FAILED);
}
memset(ptv, 0, sizeof(AFPThreadVars));
ptv->tv = tv;
ptv->cooked = 0;
strlcpy(ptv->iface, afpconfig->iface, AFP_IFACE_NAME_LENGTH);
ptv->iface[AFP_IFACE_NAME_LENGTH - 1]= '\0';
ptv->livedev = LiveGetDevice(ptv->iface);
if (ptv->livedev == NULL) {
SCLogError(SC_ERR_INVALID_VALUE, "Unable to find Live device");
SCFree(ptv);
SCReturnInt(TM_ECODE_FAILED);
}
ptv->buffer_size = afpconfig->buffer_size;
ptv->ring_size = afpconfig->ring_size;
ptv->promisc = afpconfig->promisc;
ptv->checksum_mode = afpconfig->checksum_mode;
ptv->bpf_filter = NULL;
ptv->threads = 1;
#ifdef HAVE_PACKET_FANOUT
ptv->cluster_type = PACKET_FANOUT_LB;
ptv->cluster_id = 1;
/* We only set cluster info if the number of reader threads is greater than 1 */
if (afpconfig->threads > 1) {
ptv->cluster_id = afpconfig->cluster_id;
ptv->cluster_type = afpconfig->cluster_type;
ptv->threads = afpconfig->threads;
}
#endif
ptv->flags = afpconfig->flags;
if (afpconfig->bpf_filter) {
ptv->bpf_filter = afpconfig->bpf_filter;
}
#ifdef PACKET_STATISTICS
ptv->capture_kernel_packets = SCPerfTVRegisterCounter("capture.kernel_packets",
ptv->tv,
SC_PERF_TYPE_UINT64,
"NULL");
ptv->capture_kernel_drops = SCPerfTVRegisterCounter("capture.kernel_drops",
ptv->tv,
SC_PERF_TYPE_UINT64,
"NULL");
#endif
char *active_runmode = RunmodeGetActive();
if (active_runmode && !strcmp("workers", active_runmode)) {
ptv->flags |= AFP_ZERO_COPY;
SCLogInfo("Enabling zero copy mode");
} else {
/* If we are using copy mode we need a lock */
ptv->flags |= AFP_SOCK_PROTECT;
}
/* If we are in RING mode, then we can use ZERO copy
* by using the data release mechanism */
if (ptv->flags & AFP_RING_MODE) {
ptv->flags |= AFP_ZERO_COPY;
SCLogInfo("Enabling zero copy mode by using data release call");
}
ptv->copy_mode = afpconfig->copy_mode;
if (ptv->copy_mode != AFP_COPY_MODE_NONE) {
strlcpy(ptv->out_iface, afpconfig->out_iface, AFP_IFACE_NAME_LENGTH);
ptv->out_iface[AFP_IFACE_NAME_LENGTH - 1]= '\0';
/* Warn about BPF filter consequence */
if (ptv->bpf_filter) {
SCLogWarning(SC_WARN_UNCOMMON, "Enabling a BPF filter in IPS mode result"
" in dropping all non matching packets.");
}
}
if (AFPPeersListAdd(ptv) == TM_ECODE_FAILED) {
SCFree(ptv);
afpconfig->DerefFunc(afpconfig);
SCReturnInt(TM_ECODE_FAILED);
}
#define T_DATA_SIZE 70000
ptv->data = SCMalloc(T_DATA_SIZE);
if (ptv->data == NULL) {
afpconfig->DerefFunc(afpconfig);
SCFree(ptv);
SCReturnInt(TM_ECODE_FAILED);
}
ptv->datalen = T_DATA_SIZE;
#undef T_DATA_SIZE
*data = (void *)ptv;
afpconfig->DerefFunc(afpconfig);
SCReturnInt(TM_ECODE_OK);
}
/**
* \brief This function prints stats to the screen at exit.
* \param tv pointer to ThreadVars
* \param data pointer that gets cast into AFPThreadVars for ptv
*/
void ReceiveAFPThreadExitStats(ThreadVars *tv, void *data) {
SCEnter();
AFPThreadVars *ptv = (AFPThreadVars *)data;
#ifdef PACKET_STATISTICS
AFPDumpCounters(ptv);
SCLogInfo("(%s) Kernel: Packets %" PRIu64 ", dropped %" PRIu64 "",
tv->name,
(uint64_t) SCPerfGetLocalCounterValue(ptv->capture_kernel_packets, tv->sc_perf_pca),
(uint64_t) SCPerfGetLocalCounterValue(ptv->capture_kernel_drops, tv->sc_perf_pca));
#endif
SCLogInfo("(%s) Packets %" PRIu32 ", bytes %" PRIu64 "", tv->name, ptv->pkts, ptv->bytes);
}
/**
* \brief DeInit function closes af packet socket at exit.
* \param tv pointer to ThreadVars
* \param data pointer that gets cast into AFPThreadVars for ptv
*/
TmEcode ReceiveAFPThreadDeinit(ThreadVars *tv, void *data) {
AFPThreadVars *ptv = (AFPThreadVars *)data;
AFPSwitchState(ptv, AFP_STATE_DOWN);
if (ptv->data != NULL) {
SCFree(ptv->data);
ptv->data = NULL;
}
ptv->datalen = 0;
ptv->bpf_filter = NULL;
SCReturnInt(TM_ECODE_OK);
}
/**
* \brief This function passes off to link type decoders.
*
* DecodeAFP reads packets from the PacketQueue and passes
* them off to the proper link type decoder.
*
* \param t pointer to ThreadVars
* \param p pointer to the current packet
* \param data pointer that gets cast into AFPThreadVars for ptv
* \param pq pointer to the current PacketQueue
*/
TmEcode DecodeAFP(ThreadVars *tv, Packet *p, void *data, PacketQueue *pq, PacketQueue *postpq)
{
SCEnter();
DecodeThreadVars *dtv = (DecodeThreadVars *)data;
/* update counters */
SCPerfCounterIncr(dtv->counter_pkts, tv->sc_perf_pca);
SCPerfCounterIncr(dtv->counter_pkts_per_sec, tv->sc_perf_pca);
SCPerfCounterAddUI64(dtv->counter_bytes, tv->sc_perf_pca, GET_PKT_LEN(p));
#if 0
SCPerfCounterAddDouble(dtv->counter_bytes_per_sec, tv->sc_perf_pca, GET_PKT_LEN(p));
SCPerfCounterAddDouble(dtv->counter_mbit_per_sec, tv->sc_perf_pca,
(GET_PKT_LEN(p) * 8)/1000000.0);
#endif
SCPerfCounterAddUI64(dtv->counter_avg_pkt_size, tv->sc_perf_pca, GET_PKT_LEN(p));
SCPerfCounterSetUI64(dtv->counter_max_pkt_size, tv->sc_perf_pca, GET_PKT_LEN(p));
/* call the decoder */
switch(p->datalink) {
case LINKTYPE_LINUX_SLL:
DecodeSll(tv, dtv, p, GET_PKT_DATA(p), GET_PKT_LEN(p), pq);
break;
case LINKTYPE_ETHERNET:
DecodeEthernet(tv, dtv, p,GET_PKT_DATA(p), GET_PKT_LEN(p), pq);
break;
case LINKTYPE_PPP:
DecodePPP(tv, dtv, p, GET_PKT_DATA(p), GET_PKT_LEN(p), pq);
break;
case LINKTYPE_RAW:
DecodeRaw(tv, dtv, p, GET_PKT_DATA(p), GET_PKT_LEN(p), pq);
break;
default:
SCLogError(SC_ERR_DATALINK_UNIMPLEMENTED, "Error: datalink type %" PRId32 " not yet supported in module DecodeAFP", p->datalink);
break;
}
SCReturnInt(TM_ECODE_OK);
}
TmEcode DecodeAFPThreadInit(ThreadVars *tv, void *initdata, void **data)
{
SCEnter();
DecodeThreadVars *dtv = NULL;
dtv = DecodeThreadVarsAlloc();
if (dtv == NULL)
SCReturnInt(TM_ECODE_FAILED);
DecodeRegisterPerfCounters(dtv, tv);
*data = (void *)dtv;
SCReturnInt(TM_ECODE_OK);
}
#endif /* HAVE_AF_PACKET */
/* eof */
/**
* @}
*/