You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
suricata/rust/src/applayertemplate/template.rs

606 lines
18 KiB
Rust

/* Copyright (C) 2018-2020 Open Information Security Foundation
*
* You can copy, redistribute or modify this Program under the terms of
* the GNU General Public License version 2 as published by the Free
* Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* version 2 along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA.
*/
use std;
use crate::core::{self, ALPROTO_UNKNOWN, AppProto, Flow, IPPROTO_TCP};
use crate::applayer::{self, *};
use std::ffi::CString;
use nom;
use super::parser;
static mut ALPROTO_TEMPLATE: AppProto = ALPROTO_UNKNOWN;
pub struct TemplateTransaction {
tx_id: u64,
pub request: Option<String>,
pub response: Option<String>,
de_state: Option<*mut core::DetectEngineState>,
events: *mut core::AppLayerDecoderEvents,
tx_data: AppLayerTxData,
}
impl TemplateTransaction {
pub fn new() -> TemplateTransaction {
TemplateTransaction {
tx_id: 0,
request: None,
response: None,
de_state: None,
events: std::ptr::null_mut(),
tx_data: AppLayerTxData::new(),
}
}
pub fn free(&mut self) {
if self.events != std::ptr::null_mut() {
core::sc_app_layer_decoder_events_free_events(&mut self.events);
}
if let Some(state) = self.de_state {
core::sc_detect_engine_state_free(state);
}
}
}
impl Drop for TemplateTransaction {
fn drop(&mut self) {
self.free();
}
}
pub struct TemplateState {
tx_id: u64,
transactions: Vec<TemplateTransaction>,
request_gap: bool,
response_gap: bool,
}
impl TemplateState {
pub fn new() -> Self {
Self {
tx_id: 0,
transactions: Vec::new(),
request_gap: false,
response_gap: false,
}
}
// Free a transaction by ID.
fn free_tx(&mut self, tx_id: u64) {
let len = self.transactions.len();
let mut found = false;
let mut index = 0;
for i in 0..len {
let tx = &self.transactions[i];
if tx.tx_id == tx_id + 1 {
found = true;
index = i;
break;
}
}
if found {
self.transactions.remove(index);
}
}
pub fn get_tx(&mut self, tx_id: u64) -> Option<&TemplateTransaction> {
for tx in &mut self.transactions {
if tx.tx_id == tx_id + 1 {
return Some(tx);
}
}
return None;
}
fn new_tx(&mut self) -> TemplateTransaction {
let mut tx = TemplateTransaction::new();
self.tx_id += 1;
tx.tx_id = self.tx_id;
return tx;
}
fn find_request(&mut self) -> Option<&mut TemplateTransaction> {
for tx in &mut self.transactions {
if tx.response.is_none() {
return Some(tx);
}
}
None
}
fn parse_request(&mut self, input: &[u8]) -> AppLayerResult {
// We're not interested in empty requests.
if input.len() == 0 {
return AppLayerResult::ok();
}
// If there was gap, check we can sync up again.
if self.request_gap {
if probe(input).is_err() {
// The parser now needs to decide what to do as we are not in sync.
// For this template, we'll just try again next time.
return AppLayerResult::ok();
}
// It looks like we're in sync with a message header, clear gap
// state and keep parsing.
self.request_gap = false;
}
let mut start = input;
while start.len() > 0 {
match parser::parse_message(start) {
Ok((rem, request)) => {
start = rem;
SCLogNotice!("Request: {}", request);
let mut tx = self.new_tx();
tx.request = Some(request);
self.transactions.push(tx);
},
Err(nom::Err::Incomplete(_)) => {
// Not enough data. This parser doesn't give us a good indication
// of how much data is missing so just ask for one more byte so the
// parse is called as soon as more data is received.
let consumed = input.len() - start.len();
let needed = start.len() + 1;
return AppLayerResult::incomplete(consumed as u32, needed as u32);
},
Err(_) => {
return AppLayerResult::err();
},
}
}
// Input was fully consumed.
return AppLayerResult::ok();
}
fn parse_response(&mut self, input: &[u8]) -> AppLayerResult {
// We're not interested in empty responses.
if input.len() == 0 {
return AppLayerResult::ok();
}
if self.response_gap {
if probe(input).is_err() {
// The parser now needs to decide what to do as we are not in sync.
// For this template, we'll just try again next time.
return AppLayerResult::ok();
}
// It looks like we're in sync with a message header, clear gap
// state and keep parsing.
self.response_gap = false;
}
let mut start = input;
while start.len() > 0 {
match parser::parse_message(start) {
Ok((rem, response)) => {
start = rem;
match self.find_request() {
Some(tx) => {
tx.response = Some(response);
SCLogNotice!("Found response for request:");
SCLogNotice!("- Request: {:?}", tx.request);
SCLogNotice!("- Response: {:?}", tx.response);
}
None => {}
}
}
Err(nom::Err::Incomplete(_)) => {
let consumed = input.len() - start.len();
let needed = start.len() + 1;
return AppLayerResult::incomplete(consumed as u32, needed as u32);
}
Err(_) => {
return AppLayerResult::err();
}
}
}
// All input was fully consumed.
return AppLayerResult::ok();
}
fn tx_iterator(
&mut self,
min_tx_id: u64,
state: &mut u64,
) -> Option<(&TemplateTransaction, u64, bool)> {
let mut index = *state as usize;
let len = self.transactions.len();
while index < len {
let tx = &self.transactions[index];
if tx.tx_id < min_tx_id + 1 {
index += 1;
continue;
}
*state = index as u64;
return Some((tx, tx.tx_id - 1, (len - index) > 1));
}
return None;
}
fn on_request_gap(&mut self, _size: u32) {
self.request_gap = true;
}
fn on_response_gap(&mut self, _size: u32) {
self.response_gap = true;
}
}
/// Probe for a valid header.
///
/// As this template protocol uses messages prefixed with the size
/// as a string followed by a ':', we look at up to the first 10
/// characters for that pattern.
fn probe(input: &[u8]) -> nom::IResult<&[u8], ()> {
let size = std::cmp::min(10, input.len());
let (rem, prefix) = nom::bytes::complete::take(size)(input)?;
nom::sequence::terminated(
nom::bytes::complete::take_while1(nom::character::is_digit),
nom::bytes::complete::tag(":"),
)(prefix)?;
Ok((rem, ()))
}
// C exports.
export_tx_get_detect_state!(
rs_template_tx_get_detect_state,
TemplateTransaction
);
export_tx_set_detect_state!(
rs_template_tx_set_detect_state,
TemplateTransaction
);
/// C entry point for a probing parser.
#[no_mangle]
pub unsafe extern "C" fn rs_template_probing_parser(
_flow: *const Flow,
_direction: u8,
input: *const u8,
input_len: u32,
_rdir: *mut u8
) -> AppProto {
// Need at least 2 bytes.
if input_len > 1 && input != std::ptr::null_mut() {
let slice = build_slice!(input, input_len as usize);
if probe(slice).is_ok() {
return ALPROTO_TEMPLATE;
}
}
return ALPROTO_UNKNOWN;
}
#[no_mangle]
pub extern "C" fn rs_template_state_new(_orig_state: *mut std::os::raw::c_void, _orig_proto: AppProto) -> *mut std::os::raw::c_void {
let state = TemplateState::new();
let boxed = Box::new(state);
return Box::into_raw(boxed) as *mut std::os::raw::c_void;
}
#[no_mangle]
pub unsafe extern "C" fn rs_template_state_free(state: *mut std::os::raw::c_void) {
std::mem::drop(Box::from_raw(state as *mut TemplateState));
}
#[no_mangle]
pub unsafe extern "C" fn rs_template_state_tx_free(
state: *mut std::os::raw::c_void,
tx_id: u64,
) {
let state = cast_pointer!(state, TemplateState);
state.free_tx(tx_id);
}
#[no_mangle]
pub unsafe extern "C" fn rs_template_parse_request(
_flow: *const Flow,
state: *mut std::os::raw::c_void,
pstate: *mut std::os::raw::c_void,
input: *const u8,
input_len: u32,
_data: *const std::os::raw::c_void,
_flags: u8,
) -> AppLayerResult {
let eof = if AppLayerParserStateIssetFlag(pstate, APP_LAYER_PARSER_EOF_TS) > 0 {
true
} else {
false
};
if eof {
// If needed, handle EOF, or pass it into the parser.
return AppLayerResult::ok();
}
let state = cast_pointer!(state, TemplateState);
if input == std::ptr::null_mut() && input_len > 0 {
// Here we have a gap signaled by the input being null, but a greater
// than 0 input_len which provides the size of the gap.
state.on_request_gap(input_len);
AppLayerResult::ok()
} else {
let buf = build_slice!(input, input_len as usize);
state.parse_request(buf)
}
}
#[no_mangle]
pub unsafe extern "C" fn rs_template_parse_response(
_flow: *const Flow,
state: *mut std::os::raw::c_void,
pstate: *mut std::os::raw::c_void,
input: *const u8,
input_len: u32,
_data: *const std::os::raw::c_void,
_flags: u8,
) -> AppLayerResult {
let _eof = if AppLayerParserStateIssetFlag(pstate, APP_LAYER_PARSER_EOF_TC) > 0 {
true
} else {
false
};
let state = cast_pointer!(state, TemplateState);
if input == std::ptr::null_mut() && input_len > 0 {
// Here we have a gap signaled by the input being null, but a greater
// than 0 input_len which provides the size of the gap.
state.on_response_gap(input_len);
AppLayerResult::ok()
} else {
let buf = build_slice!(input, input_len as usize);
state.parse_response(buf)
}
}
#[no_mangle]
pub unsafe extern "C" fn rs_template_state_get_tx(
state: *mut std::os::raw::c_void,
tx_id: u64,
) -> *mut std::os::raw::c_void {
let state = cast_pointer!(state, TemplateState);
match state.get_tx(tx_id) {
Some(tx) => {
return tx as *const _ as *mut _;
}
None => {
return std::ptr::null_mut();
}
}
}
#[no_mangle]
pub unsafe extern "C" fn rs_template_state_get_tx_count(
state: *mut std::os::raw::c_void,
) -> u64 {
let state = cast_pointer!(state, TemplateState);
return state.tx_id;
}
#[no_mangle]
pub unsafe extern "C" fn rs_template_tx_get_alstate_progress(
tx: *mut std::os::raw::c_void,
_direction: u8,
) -> std::os::raw::c_int {
let tx = cast_pointer!(tx, TemplateTransaction);
// Transaction is done if we have a response.
if tx.response.is_some() {
return 1;
}
return 0;
}
#[no_mangle]
pub unsafe extern "C" fn rs_template_state_get_events(
tx: *mut std::os::raw::c_void
) -> *mut core::AppLayerDecoderEvents {
let tx = cast_pointer!(tx, TemplateTransaction);
return tx.events;
}
#[no_mangle]
pub extern "C" fn rs_template_state_get_event_info(
_event_name: *const std::os::raw::c_char,
_event_id: *mut std::os::raw::c_int,
_event_type: *mut core::AppLayerEventType,
) -> std::os::raw::c_int {
return -1;
}
#[no_mangle]
pub extern "C" fn rs_template_state_get_event_info_by_id(_event_id: std::os::raw::c_int,
_event_name: *mut *const std::os::raw::c_char,
_event_type: *mut core::AppLayerEventType
) -> i8 {
return -1;
}
#[no_mangle]
pub unsafe extern "C" fn rs_template_state_get_tx_iterator(
_ipproto: u8,
_alproto: AppProto,
state: *mut std::os::raw::c_void,
min_tx_id: u64,
_max_tx_id: u64,
istate: &mut u64,
) -> applayer::AppLayerGetTxIterTuple {
let state = cast_pointer!(state, TemplateState);
match state.tx_iterator(min_tx_id, istate) {
Some((tx, out_tx_id, has_next)) => {
let c_tx = tx as *const _ as *mut _;
let ires = applayer::AppLayerGetTxIterTuple::with_values(
c_tx,
out_tx_id,
has_next,
);
return ires;
}
None => {
return applayer::AppLayerGetTxIterTuple::not_found();
}
}
}
/// Get the request buffer for a transaction from C.
///
/// No required for parsing, but an example function for retrieving a
/// pointer to the request buffer from C for detection.
#[no_mangle]
pub unsafe extern "C" fn rs_template_get_request_buffer(
tx: *mut std::os::raw::c_void,
buf: *mut *const u8,
len: *mut u32,
) -> u8
{
let tx = cast_pointer!(tx, TemplateTransaction);
if let Some(ref request) = tx.request {
if request.len() > 0 {
*len = request.len() as u32;
*buf = request.as_ptr();
return 1;
}
}
return 0;
}
/// Get the response buffer for a transaction from C.
#[no_mangle]
pub unsafe extern "C" fn rs_template_get_response_buffer(
tx: *mut std::os::raw::c_void,
buf: *mut *const u8,
len: *mut u32,
) -> u8
{
let tx = cast_pointer!(tx, TemplateTransaction);
if let Some(ref response) = tx.response {
if response.len() > 0 {
*len = response.len() as u32;
*buf = response.as_ptr();
return 1;
}
}
return 0;
}
export_tx_data_get!(rs_template_get_tx_data, TemplateTransaction);
// Parser name as a C style string.
const PARSER_NAME: &'static [u8] = b"template-rust\0";
#[no_mangle]
pub unsafe extern "C" fn rs_template_register_parser() {
let default_port = CString::new("[7000]").unwrap();
let parser = RustParser {
name: PARSER_NAME.as_ptr() as *const std::os::raw::c_char,
default_port: default_port.as_ptr(),
ipproto: IPPROTO_TCP,
probe_ts: Some(rs_template_probing_parser),
probe_tc: Some(rs_template_probing_parser),
min_depth: 0,
max_depth: 16,
state_new: rs_template_state_new,
state_free: rs_template_state_free,
tx_free: rs_template_state_tx_free,
parse_ts: rs_template_parse_request,
parse_tc: rs_template_parse_response,
get_tx_count: rs_template_state_get_tx_count,
get_tx: rs_template_state_get_tx,
tx_comp_st_ts: 1,
tx_comp_st_tc: 1,
tx_get_progress: rs_template_tx_get_alstate_progress,
get_de_state: rs_template_tx_get_detect_state,
set_de_state: rs_template_tx_set_detect_state,
get_events: Some(rs_template_state_get_events),
get_eventinfo: Some(rs_template_state_get_event_info),
get_eventinfo_byid : Some(rs_template_state_get_event_info_by_id),
localstorage_new: None,
localstorage_free: None,
get_files: None,
get_tx_iterator: Some(rs_template_state_get_tx_iterator),
get_tx_data: rs_template_get_tx_data,
apply_tx_config: None,
flags: APP_LAYER_PARSER_OPT_ACCEPT_GAPS,
truncate: None,
};
let ip_proto_str = CString::new("tcp").unwrap();
if AppLayerProtoDetectConfProtoDetectionEnabled(
ip_proto_str.as_ptr(),
parser.name,
) != 0
{
let alproto = AppLayerRegisterProtocolDetection(&parser, 1);
ALPROTO_TEMPLATE = alproto;
if AppLayerParserConfParserEnabled(
ip_proto_str.as_ptr(),
parser.name,
) != 0
{
let _ = AppLayerRegisterParser(&parser, alproto);
}
SCLogNotice!("Rust template parser registered.");
} else {
SCLogNotice!("Protocol detector and parser disabled for TEMPLATE.");
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn test_probe() {
assert!(probe(b"1").is_err());
assert!(probe(b"1:").is_ok());
assert!(probe(b"123456789:").is_ok());
assert!(probe(b"0123456789:").is_err());
}
#[test]
fn test_incomplete() {
let mut state = TemplateState::new();
let buf = b"5:Hello3:bye";
let r = state.parse_request(&buf[0..0]);
assert_eq!(r, AppLayerResult{ status: 0, consumed: 0, needed: 0});
let r = state.parse_request(&buf[0..1]);
assert_eq!(r, AppLayerResult{ status: 1, consumed: 0, needed: 2});
let r = state.parse_request(&buf[0..2]);
assert_eq!(r, AppLayerResult{ status: 1, consumed: 0, needed: 3});
// This is the first message and only the first message.
let r = state.parse_request(&buf[0..7]);
assert_eq!(r, AppLayerResult{ status: 0, consumed: 0, needed: 0});
// The first message and a portion of the second.
let r = state.parse_request(&buf[0..9]);
assert_eq!(r, AppLayerResult{ status: 1, consumed: 7, needed: 3});
}
}