You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
suricata/src/alert-unified2-alert.c

2038 lines
60 KiB
C

/* Copyright (C) 2007-2014 Open Information Security Foundation
*
* You can copy, redistribute or modify this Program under the terms of
* the GNU General Public License version 2 as published by the Free
* Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* version 2 along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA.
*/
/**
* \file
*
* \author Breno Silva <breno.silva@gmail.com>
* \author Eric Leblond <eric@regit.org>
* \author Ignacio Sanchez <sanchezmartin.ji@gmail.com>
* \author Duarte Silva <duarte.silva@serializing.me>
*
* Logs alerts in a format compatible to Snort's unified2 format, so it should
* be readable by Barnyard2.
*/
#include "suricata-common.h"
#include "runmodes.h"
#include "debug.h"
#include "detect.h"
#include "flow.h"
#include "conf.h"
#include "pkt-var.h"
#include "threads.h"
#include "threadvars.h"
#include "tm-threads.h"
#include "output.h"
#include "util-unittest.h"
#include "alert-unified2-alert.h"
#include "decode-ipv4.h"
#include "host.h"
#include "util-profiling.h"
#include "decode.h"
#include "util-error.h"
#include "util-debug.h"
#include "util-time.h"
#include "util-byte.h"
#include "util-misc.h"
#include "util-logopenfile.h"
#include "app-layer-parser.h"
#include "app-layer-htp.h"
#include "app-layer.h"
#include "app-layer-htp-xff.h"
#include "util-privs.h"
#include "stream.h"
#include "stream-tcp-inline.h"
#include "util-optimize.h"
#ifndef IPPROTO_SCTP
#define IPPROTO_SCTP 132
#endif
#define DEFAULT_LOG_FILENAME "unified2.alert"
/**< Default log file limit in MB. */
#define DEFAULT_LIMIT 32 * 1024 * 1024
/**< Minimum log file limit in MB. */
#define MIN_LIMIT 1 * 1024 * 1024
/* Default Sensor ID value */
static uint32_t sensor_id = 0;
/**
* Unified2 Extra Data Header
*
*/
typedef struct Unified2ExtraDataHdr_ {
uint32_t event_type;
uint32_t event_length;
} __attribute__((__packed__)) Unified2ExtraDataHdr;
/**
* Unified2 Extra Data (currently used only for XFF)
*
*/
typedef struct Unified2ExtraData_ {
uint32_t sensor_id;
uint32_t event_id;
uint32_t event_second;
uint32_t type; /* EventInfo */
uint32_t data_type; /*EventDataType */
uint32_t blob_length; /* Length of the data + sizeof(blob_length) + sizeof(data_type)*/
} Unified2ExtraData;
/**
* Unified2 file header struct
*
* Used for storing file header options.
*/
typedef struct Unified2AlertFileHeader_ {
uint32_t type; /**< unified2 type header */
uint32_t length; /**< unified2 struct size length */
} Unified2AlertFileHeader;
/**
* Unified2 Ipv4 struct
*
* Used for storing ipv4 type values.
*/
typedef struct AlertIPv4Unified2_ {
uint32_t sensor_id; /**< sendor id */
uint32_t event_id; /**< event id */
uint32_t event_second; /**< event second */
uint32_t event_microsecond; /**< event microsecond */
uint32_t signature_id; /**< signature id */
uint32_t generator_id; /**< generator id */
uint32_t signature_revision; /**< signature revision */
uint32_t classification_id; /**< classification id */
uint32_t priority_id; /**< priority id */
uint32_t src_ip; /**< source ip */
uint32_t dst_ip; /**< destination ip */
uint16_t sp; /**< source port */
uint16_t dp; /**< destination port */
uint8_t protocol; /**< protocol */
uint8_t packet_action; /**< packet action */
} AlertIPv4Unified2;
/**
* Unified2 Ipv6 type struct
*
* Used for storing ipv6 type values.
*/
typedef struct AlertIPv6Unified2_ {
uint32_t sensor_id; /**< sendor id */
uint32_t event_id; /**< event id */
uint32_t event_second; /**< event second */
uint32_t event_microsecond; /**< event microsecond */
uint32_t signature_id; /**< signature id */
uint32_t generator_id; /**< generator id */
uint32_t signature_revision; /**< signature revision */
uint32_t classification_id; /**< classification id */
uint32_t priority_id; /**< priority id */
struct in6_addr src_ip; /**< source ip */
struct in6_addr dst_ip; /**< destination ip */
uint16_t sp; /**< source port */
uint16_t dp; /**< destination port */
uint8_t protocol; /**< protocol */
uint8_t packet_action; /**< packet action */
} AlertIPv6Unified2;
/**
* Unified2 packet type struct
*
* Used for storing packet type values.
*/
typedef struct AlertUnified2Packet_ {
uint32_t sensor_id; /**< sensor id */
uint32_t event_id; /**< event id */
uint32_t event_second; /**< event second */
uint32_t packet_second; /**< packet second */
uint32_t packet_microsecond; /**< packet microsecond */
uint32_t linktype; /**< link type */
uint32_t packet_length; /**< packet length */
uint8_t packet_data[4]; /**< packet data */
} Unified2Packet;
/** Extracted XFF IP is v4 */
#define UNIFIED2_ALERT_XFF_IPV4 8
/** Extracted XFF IP is v4 */
#define UNIFIED2_ALERT_XFF_IPV6 16
typedef struct Unified2AlertFileCtx_ {
LogFileCtx *file_ctx;
HttpXFFCfg *xff_cfg;
uint32_t flags; /**< flags for all alerts */
} Unified2AlertFileCtx;
#define UNIFIED2_ALERT_FLAGS_EMIT_PACKET (1 << 0)
/**
* Unified2 thread vars
*
* Used for storing file options.
*/
typedef struct Unified2AlertThread_ {
Unified2AlertFileCtx *unified2alert_ctx; /**< LogFileCtx pointer */
uint8_t *data; /**< Per function and thread data */
/** Pointer to the Unified2AlertFileHeader contained in
* the pointer data. */
Unified2AlertFileHeader *hdr;
/** Pointer to the Unified2Packet contained in
* the pointer data. */
Unified2Packet *phdr;
/** Pointer to the IPv4 or IPv6 header contained in
* the pointer data. */
void *iphdr;
int datalen; /**< Length of per function and thread data */
int offset; /**< Offset used to now where to fill data */
int length; /**< Length of data for current alert */
uint8_t xff_flags; /**< XFF flags for the current alert */
uint32_t xff_ip[4]; /**< The XFF reported IP address for the current alert */
uint32_t event_id;
} Unified2AlertThread;
#define UNIFIED2_PACKET_SIZE (sizeof(Unified2Packet) - 4)
SC_ATOMIC_DECLARE(unsigned int, unified2_event_id); /**< Atomic counter, to link relative event */
/** prototypes */
TmEcode Unified2AlertThreadInit(ThreadVars *, const void *, void **);
TmEcode Unified2AlertThreadDeinit(ThreadVars *, void *);
static int Unified2IPv4TypeAlert(ThreadVars *, const Packet *, void *);
static int Unified2IPv6TypeAlert(ThreadVars *, const Packet *, void *);
static int Unified2PacketTypeAlert(Unified2AlertThread *, const Packet *, uint32_t, int);
static int Unified2XFFTypeAlert(Unified2AlertThread *, const Packet *, uint32_t);
void Unified2RegisterTests(void);
static int Unified2AlertOpenFileCtx(LogFileCtx *, const char *, bool);
static void Unified2AlertDeInitCtx(OutputCtx *);
int Unified2Condition(ThreadVars *tv, const Packet *p);
int Unified2Logger(ThreadVars *tv, void *data, const Packet *p);
#define MODULE_NAME "Unified2Alert"
void Unified2AlertRegister(void)
{
OutputRegisterPacketModule(LOGGER_UNIFIED2, MODULE_NAME, "unified2-alert",
Unified2AlertInitCtx, Unified2Logger, Unified2Condition,
Unified2AlertThreadInit, Unified2AlertThreadDeinit, NULL);
Unified2RegisterTests();
}
/**
* \brief Function to close unified2 file
*
* \param aun Unified2 thread variable.
*/
static int Unified2AlertCloseFile(Unified2AlertThread *aun)
{
if (aun->unified2alert_ctx->file_ctx->fp != NULL) {
fclose(aun->unified2alert_ctx->file_ctx->fp);
}
aun->unified2alert_ctx->file_ctx->size_current = 0;
return 0;
}
/**
* \brief Function to rotate unified2 file
*
* \param aun Unified2 thread variable.
* \retval 0 on succces
* \retval -1 on failure
*/
static int Unified2AlertRotateFile(Unified2AlertThread *aun, bool truncate)
{
if (Unified2AlertCloseFile(aun) < 0) {
SCLogError(SC_ERR_UNIFIED2_ALERT_GENERIC,
"Error: Unified2AlertCloseFile failed");
return -1;
}
if (Unified2AlertOpenFileCtx(aun->unified2alert_ctx->file_ctx,
aun->unified2alert_ctx->file_ctx->prefix, truncate) < 0) {
SCLogError(SC_ERR_UNIFIED2_ALERT_GENERIC,
"Error: Unified2AlertOpenFileCtx, open new log file failed");
return -1;
}
return 0;
}
/**
* \brief Wrapper for fwrite
*
* This function is basically a wrapper for fwrite which take
* in charge a size counter.
*
* \return 1 in case of success
*/
static int Unified2Write(Unified2AlertThread *aun)
{
int ret;
ret = fwrite(aun->data, aun->length, 1, aun->unified2alert_ctx->file_ctx->fp);
if (ret != 1) {
SCLogError(SC_ERR_FWRITE, "Error: fwrite failed: %s", strerror(errno));
return -1;
}
aun->unified2alert_ctx->file_ctx->size_current += aun->length;
return 1;
}
int Unified2Condition(ThreadVars *tv, const Packet *p) {
if (likely(p->alerts.cnt == 0 && !(p->flags & PKT_HAS_TAG)))
return FALSE;
return TRUE;
}
/**
* \brief Unified2 main entry function
*
* \retval TM_ECODE_OK all is good
* \retval TM_ECODE_FAILED serious error
*/
int Unified2Logger(ThreadVars *t, void *data, const Packet *p)
{
int ret = 0;
Unified2AlertThread *aun = (Unified2AlertThread *)data;
aun->xff_flags = XFF_DISABLED;
HttpXFFCfg *xff_cfg = aun->unified2alert_ctx->xff_cfg;
/* overwrite mode can only work per u2 block, not per individual
* alert. So we'll look for an XFF record once */
if ((xff_cfg->flags & XFF_OVERWRITE) && p->flow != NULL) {
char buffer[XFF_MAXLEN];
int have_xff_ip = 0;
if (FlowGetAppProtocol(p->flow) == ALPROTO_HTTP) {
have_xff_ip = HttpXFFGetIP(p->flow, xff_cfg, buffer, XFF_MAXLEN);
}
if (have_xff_ip) {
/** Be sure that we have a nice zeroed buffer */
memset(aun->xff_ip, 0, 4 * sizeof(uint32_t));
/** We can only have override mode if packet IP version matches
* the XFF IP version, otherwise fall-back to extra data */
if (inet_pton(AF_INET, buffer, aun->xff_ip) == 1) {
if (PKT_IS_IPV4(p)) {
aun->xff_flags = (UNIFIED2_ALERT_XFF_IPV4|XFF_OVERWRITE);
} else {
aun->xff_flags = (UNIFIED2_ALERT_XFF_IPV4|XFF_EXTRADATA);
}
} else if (inet_pton(AF_INET6, buffer, aun->xff_ip) == 1) {
if (PKT_IS_IPV6(p)) {
aun->xff_flags = (UNIFIED2_ALERT_XFF_IPV6|XFF_OVERWRITE);
} else {
aun->xff_flags = (UNIFIED2_ALERT_XFF_IPV6|XFF_EXTRADATA);
}
}
}
}
if (PKT_IS_IPV4(p)) {
ret = Unified2IPv4TypeAlert (t, p, data);
} else if(PKT_IS_IPV6(p)) {
ret = Unified2IPv6TypeAlert (t, p, data);
} else {
/* we're only supporting IPv4 and IPv6 */
return TM_ECODE_OK;
}
if (ret != 0) {
return TM_ECODE_FAILED;
}
return TM_ECODE_OK;
}
typedef struct _FakeIPv4Hdr {
IPV4Hdr ip4h;
TCPHdr tcph;
} FakeIPv4Hdr;
static int Unified2ForgeFakeIPv4Header(FakeIPv4Hdr *fakehdr, const Packet *p, int pkt_len, char invert)
{
fakehdr->ip4h.ip_verhl = p->ip4h->ip_verhl;
fakehdr->ip4h.ip_proto = p->ip4h->ip_proto;
if (! invert) {
fakehdr->ip4h.s_ip_src.s_addr = p->ip4h->s_ip_src.s_addr;
fakehdr->ip4h.s_ip_dst.s_addr = p->ip4h->s_ip_dst.s_addr;
} else {
fakehdr->ip4h.s_ip_dst.s_addr = p->ip4h->s_ip_src.s_addr;
fakehdr->ip4h.s_ip_src.s_addr = p->ip4h->s_ip_dst.s_addr;
}
fakehdr->ip4h.ip_len = htons((uint16_t)pkt_len);
if (! invert) {
fakehdr->tcph.th_sport = p->tcph->th_sport;
fakehdr->tcph.th_dport = p->tcph->th_dport;
} else {
fakehdr->tcph.th_dport = p->tcph->th_sport;
fakehdr->tcph.th_sport = p->tcph->th_dport;
}
fakehdr->tcph.th_offx2 = 0x50; /* just the TCP header, no options */
return 1;
}
typedef struct _FakeIPv6Hdr {
IPV6Hdr ip6h;
TCPHdr tcph;
} FakeIPv6Hdr;
/**
* \param payload_len length of the payload
*/
static int Unified2ForgeFakeIPv6Header(FakeIPv6Hdr *fakehdr, const Packet *p, int payload_len, char invert)
{
fakehdr->ip6h.s_ip6_vfc = p->ip6h->s_ip6_vfc;
fakehdr->ip6h.s_ip6_nxt = IPPROTO_TCP;
fakehdr->ip6h.s_ip6_plen = htons(sizeof(TCPHdr) + payload_len);
if (!invert) {
memcpy(fakehdr->ip6h.s_ip6_addrs, p->ip6h->s_ip6_addrs, 32);
} else {
memcpy(fakehdr->ip6h.s_ip6_src, p->ip6h->s_ip6_dst, 16);
memcpy(fakehdr->ip6h.s_ip6_dst, p->ip6h->s_ip6_src, 16);
}
if (! invert) {
fakehdr->tcph.th_sport = p->tcph->th_sport;
fakehdr->tcph.th_dport = p->tcph->th_dport;
} else {
fakehdr->tcph.th_dport = p->tcph->th_sport;
fakehdr->tcph.th_sport = p->tcph->th_dport;
}
fakehdr->tcph.th_offx2 = 0x50; /* just the TCP header, no options */
return 1;
}
/**
* \brief Write a faked Packet in unified2 file for each stream segment.
*/
static int Unified2PrintStreamSegmentCallback(const Packet *p, void *data, const uint8_t *buf, uint32_t buflen)
{
int ret = 1;
Unified2AlertThread *aun = (Unified2AlertThread *)data;
Unified2AlertFileHeader *hdr = (Unified2AlertFileHeader*)(aun->data);
Unified2Packet *phdr = (Unified2Packet *)(hdr + 1);
aun->length = 0;
aun->offset = 0;
int ethh_offset = 0;
EthernetHdr ethhdr = { {0,0,0,0,0,0}, {0,0,0,0,0,0}, htons(ETHERNET_TYPE_IPV6) };
uint32_t hdr_length = 0;
memset(hdr, 0, sizeof(Unified2AlertFileHeader));
memset(phdr, 0, sizeof(Unified2Packet));
hdr->type = htonl(UNIFIED2_PACKET_TYPE);
aun->hdr = hdr;
phdr->sensor_id = htonl(sensor_id);
phdr->linktype = htonl(p->datalink);
phdr->event_id = aun->event_id;
phdr->event_second = phdr->packet_second = htonl(p->ts.tv_sec);
phdr->packet_microsecond = htonl(p->ts.tv_usec);
aun->phdr = phdr;
if (p->datalink != DLT_EN10MB) {
/* We have raw data here */
phdr->linktype = htonl(DLT_RAW);
}
aun->length += sizeof(Unified2AlertFileHeader) + UNIFIED2_PACKET_SIZE;
aun->offset += sizeof(Unified2AlertFileHeader) + UNIFIED2_PACKET_SIZE;
/* Include Packet header */
if (PKT_IS_IPV4(p)) {
FakeIPv4Hdr fakehdr;
hdr_length = sizeof(FakeIPv4Hdr);
if (p->datalink == DLT_EN10MB) {
/* Fake this */
ethh_offset = 14;
phdr->linktype = htonl(DLT_EN10MB);
aun->length += ethh_offset;
if (aun->length > aun->datalen) {
SCLogError(SC_ERR_INVALID_VALUE, "len is too big for thread data");
goto error;
}
ethhdr.eth_type = htons(ETHERNET_TYPE_IP);
memcpy(aun->data + aun->offset, &ethhdr, 14);
aun->offset += ethh_offset;
}
memset(&fakehdr, 0, hdr_length);
aun->length += hdr_length;
Unified2ForgeFakeIPv4Header(&fakehdr, p, hdr_length + buflen, 0);
if (aun->length > aun->datalen) {
SCLogError(SC_ERR_INVALID_VALUE, "len is too big for thread data");
goto error;
}
/** If XFF is in overwrite mode... */
if (aun->xff_flags & XFF_OVERWRITE) {
BUG_ON(aun->xff_flags & UNIFIED2_ALERT_XFF_IPV6);
if (p->flowflags & FLOW_PKT_TOCLIENT) {
fakehdr.ip4h.s_ip_dst.s_addr = aun->xff_ip[0];
} else {
fakehdr.ip4h.s_ip_src.s_addr = aun->xff_ip[0];
}
}
memcpy(aun->data + aun->offset, &fakehdr, hdr_length);
aun->iphdr = (void *)(aun->data + aun->offset);
aun->offset += hdr_length;
} else if (PKT_IS_IPV6(p)) {
FakeIPv6Hdr fakehdr;
hdr_length = sizeof(FakeIPv6Hdr);
if (p->datalink == DLT_EN10MB) {
/* Fake this */
ethh_offset = 14;
phdr->linktype = htonl(DLT_EN10MB);
aun->length += ethh_offset;
if (aun->length > aun->datalen) {
SCLogError(SC_ERR_INVALID_VALUE, "len is too big for thread data");
goto error;
}
ethhdr.eth_type = htons(ETHERNET_TYPE_IPV6);
memcpy(aun->data + aun->offset, &ethhdr, 14);
aun->offset += ethh_offset;
}
memset(&fakehdr, 0, hdr_length);
Unified2ForgeFakeIPv6Header(&fakehdr, p, buflen, 1);
aun->length += hdr_length;
if (aun->length > aun->datalen) {
SCLogError(SC_ERR_INVALID_VALUE, "len is too big for thread data");
goto error;
}
/** If XFF is in overwrite mode... */
if (aun->xff_flags & XFF_OVERWRITE) {
BUG_ON(aun->xff_flags & UNIFIED2_ALERT_XFF_IPV4);
if (p->flowflags & FLOW_PKT_TOCLIENT) {
memcpy(fakehdr.ip6h.s_ip6_dst, aun->xff_ip, 4 * sizeof(uint32_t));
} else {
memcpy(fakehdr.ip6h.s_ip6_src, aun->xff_ip, 4 * sizeof(uint32_t));
}
}
memcpy(aun->data + aun->offset, &fakehdr, hdr_length);
aun->iphdr = (void *)(aun->data + aun->offset);
aun->offset += hdr_length;
} else {
goto error;
}
/* update unified2 headers for length */
aun->hdr->length = htonl(UNIFIED2_PACKET_SIZE + ethh_offset +
hdr_length + buflen);
aun->phdr->packet_length = htonl(ethh_offset + hdr_length + buflen);
/* copy stream segment payload in */
aun->length += buflen;
if (aun->length > aun->datalen) {
SCLogError(SC_ERR_INVALID_VALUE, "len is too big for thread"
" data: %d vs %d", aun->length, aun->datalen);
goto error;
}
memcpy(aun->data + aun->offset, buf, buflen);
aun->offset += buflen;
/* rebuild checksum */
if (PKT_IS_IPV6(p)) {
FakeIPv6Hdr *fakehdr = (FakeIPv6Hdr *)aun->iphdr;
fakehdr->tcph.th_sum = TCPV6Checksum(fakehdr->ip6h.s_ip6_addrs,
(uint16_t *)&fakehdr->tcph, buflen + sizeof(TCPHdr), 0);
} else {
FakeIPv4Hdr *fakehdr = (FakeIPv4Hdr *)aun->iphdr;
fakehdr->tcph.th_sum = TCPChecksum(fakehdr->ip4h.s_ip_addrs,
(uint16_t *)&fakehdr->tcph, buflen + sizeof(TCPHdr), 0);
fakehdr->ip4h.ip_csum = IPV4Checksum((uint16_t *)&fakehdr->ip4h,
IPV4_GET_RAW_HLEN(&fakehdr->ip4h), 0);
}
/* write out */
ret = Unified2Write(aun);
if (ret != 1) {
goto error;
}
return 1;
error:
aun->length = 0;
aun->offset = 0;
return -1;
}
/**
* \brief Function to fill unified2 packet format into the file. If the alert
* was generated based on a stream chunk we call the stream function
* to generate the record.
*
* Barnyard2 doesn't like DLT_RAW + IPv6, so if we don't have an ethernet
* header, we create a fake one.
*
* No need to lock here, since it's already locked.
*
* \param aun thread local data
* \param p Packet
* \param stream pointer to stream chunk
* \param event_id unique event id
* \param stream state/stream match, try logging stream segments
*
* \retval 0 on succces
* \retval -1 on failure
*/
static int Unified2PacketTypeAlert(Unified2AlertThread *aun, const Packet *p, uint32_t event_id, int stream)
{
int ret = 0;
if (!(aun->unified2alert_ctx->flags & UNIFIED2_ALERT_FLAGS_EMIT_PACKET))
return 1;
/* try stream logging first */
if (stream) {
SCLogDebug("logging the state");
uint8_t flag;
if (p->flowflags & FLOW_PKT_TOSERVER) {
flag = FLOW_PKT_TOCLIENT;
} else {
flag = FLOW_PKT_TOSERVER;
}
/* make event id available to callback */
aun->event_id = event_id;
/* run callback for all segments in the stream */
ret = StreamSegmentForEach(p, flag, Unified2PrintStreamSegmentCallback, (void *)aun);
}
/* or no segment could been logged or no segment have been logged */
if (ret == 0) {
SCLogDebug("no stream, no state: falling back to payload logging");
Unified2AlertFileHeader *hdr = (Unified2AlertFileHeader*)(aun->data);
Unified2Packet *phdr = (Unified2Packet *)(hdr + 1);
int len = (sizeof(Unified2AlertFileHeader) + UNIFIED2_PACKET_SIZE);
int datalink = p->datalink;
#ifdef HAVE_OLD_BARNYARD2
int ethh_offset = 0;
EthernetHdr ethhdr = { {0,0,0,0,0,0}, {0,0,0,0,0,0}, htons(ETHERNET_TYPE_IPV6) };
#endif
memset(hdr, 0, sizeof(Unified2AlertFileHeader));
memset(phdr, 0, sizeof(Unified2Packet));
hdr->type = htonl(UNIFIED2_PACKET_TYPE);
aun->hdr = hdr;
phdr->sensor_id = htonl(sensor_id);
phdr->linktype = htonl(datalink);
phdr->event_id = event_id;
phdr->event_second = phdr->packet_second = htonl(p->ts.tv_sec);
phdr->packet_microsecond = htonl(p->ts.tv_usec);
aun->phdr = phdr;
/* we need to reset offset and length which could
* have been modified by the segment logging */
aun->offset = len;
len += GET_PKT_LEN(p);
aun->length = len;
/* Unified 2 packet header is the one of the packet. */
phdr->linktype = htonl(p->datalink);
#ifdef HAVE_OLD_BARNYARD2
/* Fake datalink to avoid bug with old barnyard2 */
if (PKT_IS_IPV6(p) && (!p->ethh)) {
/* Fake this */
ethh_offset = 14;
datalink = DLT_EN10MB;
phdr->linktype = htonl(datalink);
aun->length += ethh_offset;
if (aun->length > aun->datalen) {
SCLogError(SC_ERR_INVALID_VALUE, "len is too big for thread data: %d vs %d",
len, aun->datalen - aun->offset);
return -1;
}
ethhdr.eth_type = htons(ETHERNET_TYPE_IPV6);
memcpy(aun->data + aun->offset, &ethhdr, 14);
aun->offset += ethh_offset;
}
#endif
if (len > aun->datalen) {
SCLogError(SC_ERR_INVALID_VALUE, "len is too big for thread data: %d vs %d",
len, aun->datalen - aun->offset);
return -1;
}
hdr->length = htonl(UNIFIED2_PACKET_SIZE + GET_PKT_LEN(p));
phdr->packet_length = htonl(GET_PKT_LEN(p));
memcpy(aun->data + aun->offset, GET_PKT_DATA(p), GET_PKT_LEN(p));
ret = Unified2Write(aun);
}
if (ret < 1) {
return -1;
}
return 1;
}
/**
* \brief Function to fill unified2 xff extra data into the file.
*
* No need to lock here, since it's already locked.
* Will clear thread local data prior to writing, resetting length and offset
*
* \param aun thread local data
* \param p Packet
* \param event_id unique event id
*
* \retval 0 on succces
* \retval -1 on failure
*/
static int Unified2XFFTypeAlert(Unified2AlertThread *aun, const Packet *p, uint32_t event_id)
{
/* Return immediately if XFF extra-data mode is not enabled */
if ( !(aun->xff_flags & XFF_EXTRADATA) ) {
return 0;
}
/* Determine length info for various data fields*/
size_t addr_size;
unsigned int blob_length;
unsigned int dhdr_type;
if ( aun->xff_flags & UNIFIED2_ALERT_XFF_IPV4 ) {
addr_size = sizeof(uint32_t);
blob_length = 3 * sizeof(uint32_t);
dhdr_type = UNIFIED2_EXTRADATA_CLIENT_IPV4_TYPE;
} else if ( aun->xff_flags & UNIFIED2_ALERT_XFF_IPV6 ) {
addr_size = 4*sizeof(uint32_t);
blob_length = 6 * sizeof(uint32_t);
dhdr_type = UNIFIED2_EXTRADATA_CLIENT_IPV6_TYPE;
} else {
return -1;
}
int hdr_length = sizeof(Unified2ExtraDataHdr)
+ sizeof(Unified2ExtraData)
+ addr_size;
int total_len = sizeof(Unified2AlertFileHeader) + hdr_length;
/* Clear aun's data and set new length */
memset( aun->data, 0, aun->datalen );
if ( total_len > aun->datalen ) {
SCLogError( SC_ERR_INVALID_VALUE, "len too big for thread data: %d, %d",
total_len, aun->datalen );
return -1;
}
aun->length = total_len;
aun->offset = total_len;
/* Prepare pointers to file header, extra data header, extra data record,
* and the extra data itself */
Unified2AlertFileHeader *hdr = (Unified2AlertFileHeader *)(aun->data);
Unified2ExtraDataHdr *ehdr = (Unified2ExtraDataHdr *)(hdr + 1);
Unified2ExtraData *dhdr = (Unified2ExtraData *)(ehdr + 1);
uint32_t *xff = (uint32_t *) (dhdr + 1);
/* Fill in all data structures and write */
hdr->type = htonl( UNIFIED2_IDS_EVENT_EXTRADATA_TYPE );
hdr->length = htonl( hdr_length );
ehdr->event_type = htonl( UNIFIED2_EXTRADATA_TYPE_EXTRA_DATA );
ehdr->event_length = hdr->length;
dhdr->sensor_id = 0;
dhdr->event_id = event_id;
dhdr->event_second = htonl( p->ts.tv_sec );
dhdr->data_type = htonl( UNIFIED2_EXTRADATA_TYPE_BLOB );
dhdr->type = htonl( dhdr_type );
dhdr->blob_length = htonl( blob_length );
memcpy( xff, aun->xff_ip, addr_size );
Unified2Write(aun);
return 0;
}
/**
* \brief Function to fill unified2 ipv6 ids type format into the file.
*
* \param t Thread Variable containing input/output queue, cpu affinity etc.
* \param p Packet struct used to decide for ipv4 or ipv6
* \param data Unified2 thread data.
*
* \retval 0 on succces
* \retval -1 on failure
*/
static int Unified2IPv6TypeAlert(ThreadVars *t, const Packet *p, void *data)
{
Unified2AlertThread *aun = (Unified2AlertThread *)data;
LogFileCtx *file_ctx = aun->unified2alert_ctx->file_ctx;
Unified2AlertFileHeader hdr;
AlertIPv6Unified2 *phdr;
AlertIPv6Unified2 gphdr;
const PacketAlert *pa;
int offset, length;
int ret;
unsigned int event_id;
if (likely(p->alerts.cnt == 0 && !(p->flags & PKT_HAS_TAG)))
return 0;
phdr = (AlertIPv6Unified2 *)(aun->data +
sizeof(Unified2AlertFileHeader));
length = (sizeof(Unified2AlertFileHeader) + sizeof(AlertIPv6Unified2));
offset = length;
memset(aun->data, 0, aun->datalen);
hdr.type = htonl(UNIFIED2_IDS_EVENT_IPV6_TYPE);
hdr.length = htonl(sizeof(AlertIPv6Unified2));
/* fill the gphdr structure with the data of the packet */
memset(&gphdr, 0, sizeof(gphdr));
/* FIXME this need to be copied for each alert */
gphdr.sensor_id = htonl(sensor_id);
gphdr.event_second = htonl(p->ts.tv_sec);
gphdr.event_microsecond = htonl(p->ts.tv_usec);
gphdr.src_ip = GET_IPV6_SRC_IN6ADDR(p);
gphdr.dst_ip = GET_IPV6_SRC_IN6ADDR(p);
/** If XFF is in overwrite mode... */
if (aun->xff_flags & XFF_OVERWRITE) {
BUG_ON(aun->xff_flags & UNIFIED2_ALERT_XFF_IPV4);
struct in6_addr *a = (struct in6_addr*)aun->xff_ip;
if (p->flowflags & FLOW_PKT_TOCLIENT) {
gphdr.dst_ip = *a;
} else {
gphdr.src_ip = *a;
}
}
gphdr.protocol = p->proto;
if(PACKET_TEST_ACTION(p, ACTION_DROP))
gphdr.packet_action = UNIFIED2_BLOCKED_FLAG;
else
gphdr.packet_action = 0;
switch(gphdr.protocol) {
case IPPROTO_ICMPV6:
if(p->icmpv6h) {
gphdr.sp = htons(p->icmpv6h->type);
gphdr.dp = htons(p->icmpv6h->code);
} else {
gphdr.sp = 0;
gphdr.dp = 0;
}
break;
case IPPROTO_ICMP:
if(p->icmpv4h) {
gphdr.sp = htons(p->icmpv4h->type);
gphdr.dp = htons(p->icmpv4h->code);
} else {
gphdr.sp = 0;
gphdr.dp = 0;
}
break;
case IPPROTO_UDP:
case IPPROTO_TCP:
case IPPROTO_SCTP:
gphdr.sp = htons(p->sp);
gphdr.dp = htons(p->dp);
break;
default:
gphdr.sp = 0;
gphdr.dp = 0;
break;
}
uint16_t i = 0;
for (; i < p->alerts.cnt + 1; i++) {
if (i < p->alerts.cnt)
pa = &p->alerts.alerts[i];
else {
if (!(p->flags & PKT_HAS_TAG))
break;
pa = PacketAlertGetTag();
}
if (unlikely(pa->s == NULL))
continue;
HttpXFFCfg *xff_cfg = aun->unified2alert_ctx->xff_cfg;
if ((xff_cfg->flags & XFF_EXTRADATA) && p->flow != NULL) {
char buffer[XFF_MAXLEN];
int have_xff_ip = 0;
if (FlowGetAppProtocol(p->flow) == ALPROTO_HTTP) {
if (pa->flags & PACKET_ALERT_FLAG_TX) {
have_xff_ip = HttpXFFGetIPFromTx(p->flow, pa->tx_id, xff_cfg, buffer, XFF_MAXLEN);
} else {
have_xff_ip = HttpXFFGetIP(p->flow, xff_cfg, buffer, XFF_MAXLEN);
}
}
if (have_xff_ip) {
memset(aun->xff_ip, 0, 4 * sizeof(uint32_t));
if (inet_pton(AF_INET, buffer, aun->xff_ip) == 1) {
aun->xff_flags = (UNIFIED2_ALERT_XFF_IPV4|XFF_EXTRADATA);
} else if (inet_pton(AF_INET6, buffer, aun->xff_ip) == 1) {
aun->xff_flags = (UNIFIED2_ALERT_XFF_IPV6|XFF_EXTRADATA);
}
}
}
/* reset length and offset */
aun->offset = offset;
aun->length = length;
memset(aun->data + aun->offset, 0, aun->datalen - aun->offset);
/* copy the part common to all alerts */
memcpy(aun->data, &hdr, sizeof(hdr));
memcpy(phdr, &gphdr, sizeof(gphdr));
/* fill the header structure with the data of the alert */
event_id = htonl(SC_ATOMIC_ADD(unified2_event_id, 1));
phdr->event_id = event_id;
phdr->generator_id = htonl(pa->s->gid);
phdr->signature_id = htonl(pa->s->id);
phdr->signature_revision = htonl(pa->s->rev);
phdr->classification_id = htonl(pa->s->class);
phdr->priority_id = htonl(pa->s->prio);
SCMutexLock(&file_ctx->fp_mutex);
bool truncate = (file_ctx->size_current + length) > file_ctx->size_limit
? true : false;
if (truncate || file_ctx->rotation_flag) {
if (Unified2AlertRotateFile(aun, truncate) < 0) {
SCMutexUnlock(&file_ctx->fp_mutex);
return -1;
}
file_ctx->rotation_flag = 0;
}
if (Unified2Write(aun) != 1) {
SCMutexUnlock(&file_ctx->fp_mutex);
return -1;
}
memset(aun->data, 0, aun->length);
aun->length = 0;
aun->offset = 0;
/* Write the extra data if any (it doesn't lock inside, since we
* already locked here for rotation check) */
ret = Unified2XFFTypeAlert(aun, p, phdr->event_id);
if (ret != 0) {
SCLogError(SC_ERR_FWRITE, "Error: fwrite failed: %s", strerror(errno));
SCMutexUnlock(&file_ctx->fp_mutex);
return -1;
}
memset(aun->data, 0, aun->length);
aun->length = 0;
aun->offset = 0;
/* stream flag based on state match, but only for TCP */
int stream = (gphdr.protocol == IPPROTO_TCP) ?
(pa->flags & (PACKET_ALERT_FLAG_STATE_MATCH|PACKET_ALERT_FLAG_STREAM_MATCH) ? 1 : 0) : 0;
ret = Unified2PacketTypeAlert(aun, p, phdr->event_id, stream);
if (ret != 1) {
SCLogError(SC_ERR_FWRITE, "Error: fwrite failed: %s", strerror(errno));
SCMutexUnlock(&file_ctx->fp_mutex);
return -1;
}
fflush(aun->unified2alert_ctx->file_ctx->fp);
SCMutexUnlock(&file_ctx->fp_mutex);
}
return 0;
}
/**
* \brief Function to fill unified2 ipv4 ids type format into the file.
*
* \param t Thread Variable containing input/output queue, cpu affinity etc.
* \param p Packet struct used to decide for ipv4 or ipv6
* \param data Unified2 thread data.
* \retval 0 on succces
* \retval -1 on failure
*/
static int Unified2IPv4TypeAlert (ThreadVars *tv, const Packet *p, void *data)
{
Unified2AlertThread *aun = (Unified2AlertThread *)data;
LogFileCtx *file_ctx = aun->unified2alert_ctx->file_ctx;
Unified2AlertFileHeader hdr;
AlertIPv4Unified2 *phdr;
AlertIPv4Unified2 gphdr;
const PacketAlert *pa;
int offset, length;
int ret;
unsigned int event_id;
if (likely(p->alerts.cnt == 0 && !(p->flags & PKT_HAS_TAG)))
return 0;
phdr = (AlertIPv4Unified2 *)(aun->data +
sizeof(Unified2AlertFileHeader));
length = (sizeof(Unified2AlertFileHeader) + sizeof(AlertIPv4Unified2));
offset = length;
memset(aun->data, 0, aun->datalen);
hdr.type = htonl(UNIFIED2_IDS_EVENT_TYPE);
hdr.length = htonl(sizeof(AlertIPv4Unified2));
/* fill the gphdr structure with the data of the packet */
memset(&gphdr, 0, sizeof(gphdr));
gphdr.sensor_id = htonl(sensor_id);
gphdr.event_id = 0;
gphdr.event_second = htonl(p->ts.tv_sec);
gphdr.event_microsecond = htonl(p->ts.tv_usec);
gphdr.src_ip = p->ip4h->s_ip_src.s_addr;
gphdr.dst_ip = p->ip4h->s_ip_dst.s_addr;
/** If XFF is in overwrite mode... */
if (aun->xff_flags & XFF_OVERWRITE) {
BUG_ON(aun->xff_flags & UNIFIED2_ALERT_XFF_IPV6);
if (p->flowflags & FLOW_PKT_TOCLIENT) {
gphdr.dst_ip = aun->xff_ip[0];
} else {
gphdr.src_ip = aun->xff_ip[0];
}
}
gphdr.protocol = IPV4_GET_RAW_IPPROTO(p->ip4h);
if(PACKET_TEST_ACTION(p, ACTION_DROP))
gphdr.packet_action = UNIFIED2_BLOCKED_FLAG;
else
gphdr.packet_action = 0;
/* TODO inverse order if needed, this should be done on a
* alert basis */
switch(gphdr.protocol) {
case IPPROTO_ICMP:
if(p->icmpv4h) {
gphdr.sp = htons(p->icmpv4h->type);
gphdr.dp = htons(p->icmpv4h->code);
}
break;
case IPPROTO_UDP:
case IPPROTO_TCP:
case IPPROTO_SCTP:
gphdr.sp = htons(p->sp);
gphdr.dp = htons(p->dp);
break;
default:
gphdr.sp = 0;
gphdr.dp = 0;
break;
}
uint16_t i = 0;
for (; i < p->alerts.cnt + 1; i++) {
if (i < p->alerts.cnt)
pa = &p->alerts.alerts[i];
else {
if (!(p->flags & PKT_HAS_TAG))
break;
pa = PacketAlertGetTag();
}
if (unlikely(pa->s == NULL))
continue;
HttpXFFCfg *xff_cfg = aun->unified2alert_ctx->xff_cfg;
if ((xff_cfg->flags & XFF_EXTRADATA) && p->flow != NULL) {
char buffer[XFF_MAXLEN];
int have_xff_ip = 0;
if (FlowGetAppProtocol(p->flow) == ALPROTO_HTTP) {
if (pa->flags & PACKET_ALERT_FLAG_TX) {
have_xff_ip = HttpXFFGetIPFromTx(p->flow, pa->tx_id, xff_cfg, buffer, XFF_MAXLEN);
} else {
have_xff_ip = HttpXFFGetIP(p->flow, xff_cfg, buffer, XFF_MAXLEN);
}
}
if (have_xff_ip) {
memset(aun->xff_ip, 0, 4 * sizeof(uint32_t));
if (inet_pton(AF_INET, buffer, aun->xff_ip) == 1) {
aun->xff_flags = (UNIFIED2_ALERT_XFF_IPV4|XFF_EXTRADATA);
} else if (inet_pton(AF_INET6, buffer, aun->xff_ip) == 1) {
aun->xff_flags = (UNIFIED2_ALERT_XFF_IPV6|XFF_EXTRADATA);
}
}
}
/* reset length and offset */
aun->offset = offset;
aun->length = length;
memset(aun->data + aun->offset, 0, aun->datalen - aun->offset);
/* copy the part common to all alerts */
memcpy(aun->data, &hdr, sizeof(hdr));
memcpy(phdr, &gphdr, sizeof(gphdr));
/* fill the hdr structure with the alert data */
event_id = htonl(SC_ATOMIC_ADD(unified2_event_id, 1));
phdr->event_id = event_id;
phdr->generator_id = htonl(pa->s->gid);
phdr->signature_id = htonl(pa->s->id);
phdr->signature_revision = htonl(pa->s->rev);
phdr->classification_id = htonl(pa->s->class);
phdr->priority_id = htonl(pa->s->prio);
/* check and enforce the filesize limit */
SCMutexLock(&file_ctx->fp_mutex);
bool truncate = (file_ctx->size_current + length) > file_ctx->size_limit
? true : false;
if (truncate || file_ctx->rotation_flag) {
if (Unified2AlertRotateFile(aun, truncate) < 0) {
SCMutexUnlock(&file_ctx->fp_mutex);
return -1;
}
file_ctx->rotation_flag = 0;
}
if (Unified2Write(aun) != 1) {
SCMutexUnlock(&file_ctx->fp_mutex);
return -1;
}
memset(aun->data, 0, aun->length);
aun->length = 0;
aun->offset = 0;
/* Write the extra data if any (it doesn't lock inside, since we
* already locked here for rotation check) */
ret = Unified2XFFTypeAlert(aun, p, event_id);
if (ret != 0) {
SCMutexUnlock(&file_ctx->fp_mutex);
return -1;
}
memset(aun->data, 0, aun->length);
aun->length = 0;
aun->offset = 0;
/* Write the alert (it doesn't lock inside, since we
* already locked here for rotation check)
*/
int stream = (gphdr.protocol == IPPROTO_TCP) ?
(pa->flags & (PACKET_ALERT_FLAG_STATE_MATCH|PACKET_ALERT_FLAG_STREAM_MATCH) ? 1 : 0) : 0;
ret = Unified2PacketTypeAlert(aun, p, event_id, stream);
if (ret != 1) {
SCMutexUnlock(&file_ctx->fp_mutex);
return -1;
}
fflush(aun->unified2alert_ctx->file_ctx->fp);
SCMutexUnlock(&file_ctx->fp_mutex);
}
return 0;
}
/**
* \brief Thread init function.
*
* \param t Thread Variable containing input/output queue, cpu affinity etc.
* \param initdata Unified2 thread initial data.
* \param data Unified2 thread data.
* \retval TM_ECODE_OK on succces
* \retval TM_ECODE_FAILED on failure
*/
TmEcode Unified2AlertThreadInit(ThreadVars *t, const void *initdata, void **data)
{
Unified2AlertThread *aun = SCMalloc(sizeof(Unified2AlertThread));
if (unlikely(aun == NULL))
return TM_ECODE_FAILED;
memset(aun, 0, sizeof(Unified2AlertThread));
if(initdata == NULL)
{
SCLogDebug("Error getting context for AlertUnified2. \"initdata\" argument NULL");
SCFree(aun);
return TM_ECODE_FAILED;
}
/** Use the Ouptut Context (file pointer and mutex) */
aun->unified2alert_ctx = ((OutputCtx *)initdata)->data;
aun->data = SCMalloc(sizeof(Unified2AlertFileHeader) + sizeof(Unified2Packet) +
IPV4_MAXPACKET_LEN + sizeof(Unified2ExtraDataHdr) + sizeof (Unified2ExtraData));
if (aun->data == NULL) {
SCFree(aun);
return TM_ECODE_FAILED;
}
aun->datalen = sizeof(Unified2AlertFileHeader) + sizeof(Unified2Packet) +
IPV4_MAXPACKET_LEN + sizeof(Unified2ExtraDataHdr) + sizeof(Unified2ExtraData);
*data = (void *)aun;
return TM_ECODE_OK;
}
/**
* \brief Thread deinit function.
*
* \param t Thread Variable containing input/output queue, cpu affinity etc.
* \param data Unified2 thread data.
* \retval TM_ECODE_OK on succces
* \retval TM_ECODE_FAILED on failure
*/
TmEcode Unified2AlertThreadDeinit(ThreadVars *t, void *data)
{
Unified2AlertThread *aun = (Unified2AlertThread *)data;
if (aun == NULL) {
goto error;
}
if (!(aun->unified2alert_ctx->file_ctx->flags & LOGFILE_ALERTS_PRINTED)) {
//SCLogInfo("Alert unified2 module wrote %"PRIu64" alerts",
// aun->unified2alert_ctx->file_ctx->alerts);
/* Do not print it for each thread */
aun->unified2alert_ctx->file_ctx->flags |= LOGFILE_ALERTS_PRINTED;
}
if (aun->data != NULL) {
SCFree(aun->data);
aun->data = NULL;
}
aun->datalen = 0;
/* clear memory */
memset(aun, 0, sizeof(Unified2AlertThread));
SCFree(aun);
return TM_ECODE_OK;
error:
return TM_ECODE_FAILED;
}
/** \brief Create a new LogFileCtx from the provided ConfNode.
* \param conf The configuration node for this output.
* \return NULL if failure, LogFileCtx* to the file_ctx if succesful
* */
OutputInitResult Unified2AlertInitCtx(ConfNode *conf)
{
OutputInitResult result = { NULL, false };
int ret = 0;
OutputCtx* output_ctx = NULL;
HttpXFFCfg *xff_cfg = NULL;
int nostamp = 0;
LogFileCtx* file_ctx = LogFileNewCtx();
if (file_ctx == NULL) {
SCLogError(SC_ERR_UNIFIED2_ALERT_GENERIC, "Couldn't create new file_ctx");
return result;
}
const char *filename = NULL;
if (conf != NULL) { /* To faciliate unit tests. */
filename = ConfNodeLookupChildValue(conf, "filename");
}
if (filename == NULL)
filename = DEFAULT_LOG_FILENAME;
file_ctx->prefix = SCStrdup(filename);
if (unlikely(file_ctx->prefix == NULL)) {
SCLogError(SC_ERR_MEM_ALLOC, "Failed to allocate file prefix");
exit(EXIT_FAILURE);
}
const char *s_limit = NULL;
file_ctx->size_limit = DEFAULT_LIMIT;
if (conf != NULL) {
s_limit = ConfNodeLookupChildValue(conf, "limit");
if (s_limit != NULL) {
if (ParseSizeStringU64(s_limit, &file_ctx->size_limit) < 0) {
SCLogError(SC_ERR_INVALID_ARGUMENT,
"Failed to initialize unified2 output, invalid limit: %s",
s_limit);
exit(EXIT_FAILURE);
}
if (file_ctx->size_limit < 4096) {
SCLogInfo("unified2-alert \"limit\" value of %"PRIu64" assumed to be pre-1.2 "
"style: setting limit to %"PRIu64"mb", file_ctx->size_limit, file_ctx->size_limit);
uint64_t size = file_ctx->size_limit * 1024 * 1024;
file_ctx->size_limit = size;
} else if (file_ctx->size_limit < MIN_LIMIT) {
SCLogError(SC_ERR_INVALID_ARGUMENT,
"Failed to initialize unified2 output, limit less than "
"allowed minimum: %d.", MIN_LIMIT);
exit(EXIT_FAILURE);
}
}
}
if (conf != NULL) {
const char *sensor_id_s = NULL;
sensor_id_s = ConfNodeLookupChildValue(conf, "sensor-id");
if (sensor_id_s != NULL) {
if (ByteExtractStringUint32(&sensor_id, 10, 0, sensor_id_s) == -1) {
SCLogError(SC_ERR_INVALID_ARGUMENT, "Failed to initialize unified2 output, invalid sensor-id: %s", sensor_id_s);
exit(EXIT_FAILURE);
}
}
if (ConfGetChildValueBool(conf, "nostamp", &nostamp)) {
if (nostamp) {
SCLogConfig("Disabling unified2 timestamp.");
file_ctx->nostamp = true;
}
}
}
uint32_t flags = UNIFIED2_ALERT_FLAGS_EMIT_PACKET;
if (conf != NULL) {
const char *payload = NULL;
payload = ConfNodeLookupChildValue(conf, "payload");
if (payload) {
if (ConfValIsFalse(payload)) {
flags &= ~UNIFIED2_ALERT_FLAGS_EMIT_PACKET;
} else if (!ConfValIsTrue(payload)) {
SCLogError(SC_ERR_INVALID_ARGUMENT, "Failed to initialize unified2 output, invalid payload: %s", payload);
exit(EXIT_FAILURE);
}
}
}
ret = Unified2AlertOpenFileCtx(file_ctx, filename, false);
if (ret < 0)
goto error;
/* Only register for file rotation if theout is non-timestamped. */
if (nostamp) {
OutputRegisterFileRotationFlag(&file_ctx->rotation_flag);
}
output_ctx = SCCalloc(1, sizeof(OutputCtx));
if (unlikely(output_ctx == NULL))
goto error;
xff_cfg = SCMalloc(sizeof(HttpXFFCfg));
if (unlikely(xff_cfg == NULL)) {
goto error;
}
memset(xff_cfg, 0x00, sizeof(HttpXFFCfg));
if (conf != NULL) {
HttpXFFGetCfg(conf, xff_cfg);
}
Unified2AlertFileCtx *unified2alert_ctx = SCMalloc(sizeof(Unified2AlertFileCtx));
if (unlikely(unified2alert_ctx == NULL)) {
goto error;
}
memset(unified2alert_ctx, 0x00, sizeof(Unified2AlertFileCtx));
unified2alert_ctx->file_ctx = file_ctx;
unified2alert_ctx->xff_cfg = xff_cfg;
unified2alert_ctx->flags = flags;
output_ctx->data = unified2alert_ctx;
output_ctx->DeInit = Unified2AlertDeInitCtx;
SCLogInfo("Unified2-alert initialized: filename %s, limit %"PRIu64" MB",
filename, file_ctx->size_limit / (1024*1024));
SC_ATOMIC_INIT(unified2_event_id);
result.ctx = output_ctx;
result.ok = true;
return result;
error:
LogFileFreeCtx(file_ctx);
if (xff_cfg != NULL) {
SCFree(xff_cfg);
}
if (output_ctx != NULL) {
SCFree(output_ctx);
}
return result;
}
static void Unified2AlertDeInitCtx(OutputCtx *output_ctx)
{
if (output_ctx != NULL) {
Unified2AlertFileCtx *unified2alert_ctx = (Unified2AlertFileCtx *) output_ctx->data;
if (unified2alert_ctx != NULL) {
LogFileCtx *logfile_ctx = unified2alert_ctx->file_ctx;
if (logfile_ctx != NULL) {
LogFileFreeCtx(logfile_ctx);
}
HttpXFFCfg *xff_cfg = unified2alert_ctx->xff_cfg;
if (xff_cfg != NULL) {
SCFree(xff_cfg);
}
SCFree(unified2alert_ctx);
}
SCFree(output_ctx);
}
}
/** \brief Read the config set the file pointer, open the file
* \param file_ctx pointer to a created LogFileCtx using LogFileNewCtx()
* \param prefix Prefix of the log file.
* \return -1 if failure, 0 if succesful
* */
static int Unified2AlertOpenFileCtx(LogFileCtx *file_ctx, const char *prefix,
bool truncate)
{
int ret = 0;
char *filename = NULL;
if (file_ctx->filename != NULL)
filename = file_ctx->filename;
else {
filename = SCMalloc(PATH_MAX); /* XXX some sane default? */
if (unlikely(filename == NULL))
return -1;
file_ctx->filename = filename;
memset(filename, 0x00, PATH_MAX);
}
/** get the time so we can have a filename with seconds since epoch */
struct timeval ts;
memset(&ts, 0x00, sizeof(struct timeval));
extern int run_mode;
if (run_mode == RUNMODE_UNITTEST)
TimeGet(&ts);
else
gettimeofday(&ts, NULL);
/* create the filename to use */
const char *log_dir;
log_dir = ConfigGetLogDirectory();
if (file_ctx->nostamp) {
snprintf(filename, PATH_MAX, "%s/%s", log_dir, prefix);
} else {
snprintf(filename, PATH_MAX, "%s/%s.%" PRIu32, log_dir, prefix, (uint32_t)ts.tv_sec);
}
if (truncate) {
file_ctx->fp = fopen(filename, "wb");
} else {
file_ctx->fp = fopen(filename, "ab");
}
if (file_ctx->fp == NULL) {
SCLogError(SC_ERR_FOPEN, "failed to open %s: %s", filename,
strerror(errno));
ret = -1;
}
return ret;
}
#ifdef UNITTESTS
/**
* \test Test the ethernet+ipv4+tcp unified2 test
*
* \retval 1 on succces
* \retval 0 on failure
*/
static int Unified2Test01(void)
{
ThreadVars tv;
DecodeThreadVars dtv;
PacketQueue pq;
void *data = NULL;
OutputInitResult oc;
LogFileCtx *lf;
Unified2AlertFileCtx *uaf = NULL;
Signature s;
uint8_t raw_ipv4_tcp[] = {
0x00, 0x14, 0xbf, 0xe8, 0xcb, 0x26, 0xaa, 0x00,
0x04, 0x00, 0x0a, 0x04, 0x08, 0x00, 0x45, 0x00,
0x00, 0x3c, 0x8c, 0x55, 0x40, 0x00, 0x40, 0x06,
0x69, 0x86, 0xc0, 0xa8, 0x0a, 0x68, 0x4a, 0x7d,
0x2f, 0x53, 0xc2, 0x40, 0x00, 0x50, 0x1f, 0x00,
0xa4, 0xd4, 0x00, 0x00, 0x00, 0x00, 0xa0, 0x02,
0x16, 0xd0, 0x3d, 0x4e, 0x00, 0x00, 0x02, 0x04,
0x05, 0xb4, 0x04, 0x02, 0x08, 0x0a, 0x00, 0x1c,
0x28, 0x81, 0x00, 0x00, 0x00, 0x00, 0x01, 0x03,
0x03, 0x06};
Packet *p = PacketGetFromAlloc();
if (unlikely(p == NULL))
return 0;
int ret;
memset(&dtv, 0, sizeof(DecodeThreadVars));
memset(&tv, 0, sizeof(ThreadVars));
memset(&pq, 0, sizeof(PacketQueue));
memset(&s, 0, sizeof(Signature));
p->alerts.cnt++;
s.id = 1;
s.gid = 1;
s.rev = 1;
p->alerts.alerts[p->alerts.cnt-1].s = &s;
SET_PKT_LEN(p, sizeof(raw_ipv4_tcp));
FlowInitConfig(FLOW_QUIET);
DecodeEthernet(&tv, &dtv, p, raw_ipv4_tcp, sizeof(raw_ipv4_tcp), &pq);
oc = Unified2AlertInitCtx(NULL);
if (oc.ctx == NULL) {
goto end;
}
uaf = oc.ctx->data;
if (uaf == NULL)
return 0;
lf = uaf->file_ctx;
if(lf == NULL) {
goto end;
}
ret = Unified2AlertThreadInit(&tv, oc.ctx, &data);
if(ret == TM_ECODE_FAILED) {
goto end;
}
ret = Unified2Logger(&tv, data, p);
if(ret == TM_ECODE_FAILED) {
goto end;
}
ret = Unified2AlertThreadDeinit(&tv, data);
if(ret == -1) {
goto end;
}
Unified2AlertDeInitCtx(oc.ctx);
PACKET_RECYCLE(p);
SCFree(p);
FlowShutdown();
return 1;
end:
PACKET_RECYCLE(p);
SCFree(p);
FlowShutdown();
return 0;
}
/**
* \test Test the ethernet+ipv6+tcp unified2 test
*
* \retval 1 on succces
* \retval 0 on failure
*/
static int Unified2Test02(void)
{
ThreadVars tv;
DecodeThreadVars dtv;
PacketQueue pq;
void *data = NULL;
OutputInitResult oc;
LogFileCtx *lf;
Unified2AlertFileCtx *uaf = NULL;
Signature s;
uint8_t raw_ipv6_tcp[] = {
0x00, 0x11, 0x25, 0x82, 0x95, 0xb5, 0x00, 0xd0,
0x09, 0xe3, 0xe8, 0xde, 0x86, 0xdd, 0x60, 0x00,
0x00, 0x00, 0x00, 0x28, 0x06, 0x40, 0x20, 0x01,
0x06, 0xf8, 0x10, 0x2d, 0x00, 0x00, 0x02, 0xd0,
0x09, 0xff, 0xfe, 0xe3, 0xe8, 0xde, 0x20, 0x01,
0x06, 0xf8, 0x09, 0x00, 0x07, 0xc0, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0xe7, 0x41,
0x00, 0x50, 0xab, 0xdc, 0xd6, 0x60, 0x00, 0x00,
0x00, 0x00, 0xa0, 0x02, 0x16, 0x80, 0x41, 0xa2,
0x00, 0x00, 0x02, 0x04, 0x05, 0xa0, 0x04, 0x02,
0x08, 0x0a, 0x00, 0x0a, 0x22, 0xa8, 0x00, 0x00,
0x00, 0x00, 0x01, 0x03, 0x03, 0x05 };
Packet *p = PacketGetFromAlloc();
if (unlikely(p == NULL))
return 0;
int ret;
memset(&dtv, 0, sizeof(DecodeThreadVars));
memset(&tv, 0, sizeof(ThreadVars));
memset(&pq, 0, sizeof(PacketQueue));
memset(&s, 0, sizeof(Signature));
p->alerts.cnt++;
s.id = 1;
s.gid = 1;
s.rev = 1;
p->alerts.alerts[p->alerts.cnt-1].s = &s;
SET_PKT_LEN(p, sizeof(raw_ipv6_tcp));
FlowInitConfig(FLOW_QUIET);
DecodeEthernet(&tv, &dtv, p, raw_ipv6_tcp, sizeof(raw_ipv6_tcp), &pq);
oc = Unified2AlertInitCtx(NULL);
if (oc.ctx == NULL) {
goto end;
}
uaf = oc.ctx->data;
if (uaf == NULL)
return 0;
lf = uaf->file_ctx;
if(lf == NULL) {
goto end;
}
ret = Unified2AlertThreadInit(&tv, oc.ctx, &data);
if(ret == -1) {
goto end;
}
ret = Unified2Logger(&tv, data, p);
if(ret == TM_ECODE_FAILED) {
goto end;
}
ret = Unified2AlertThreadDeinit(&tv, data);
if(ret == -1) {
goto end;
}
Unified2AlertDeInitCtx(oc.ctx);
PACKET_RECYCLE(p);
SCFree(p);
FlowShutdown();
return 1;
end:
PACKET_RECYCLE(p);
SCFree(p);
FlowShutdown();
return 0;
}
/**
* \test Test the GRE unified2 test
*
* \retval 1 on succces
* \retval 0 on failure
*/
static int Unified2Test03(void)
{
ThreadVars tv;
DecodeThreadVars dtv;
PacketQueue pq;
void *data = NULL;
OutputInitResult oc;
LogFileCtx *lf;
Unified2AlertFileCtx *uaf = NULL;
Signature s;
uint8_t raw_gre[] = {
0x00, 0x0e, 0x50, 0x06, 0x42, 0x96, 0xaa, 0x00,
0x04, 0x00, 0x0a, 0x04, 0x08, 0x00, 0x45, 0x00,
0x00, 0x74, 0x35, 0xa2, 0x40, 0x00, 0x40, 0x2f,
0xef, 0xcb, 0x0a, 0x00, 0x00, 0x64, 0x0a, 0x00,
0x00, 0x8a, 0x30, 0x01, 0x88, 0x0b, 0x00, 0x54,
0x00, 0x00, 0x00, 0x18, 0x29, 0x5f, 0xff, 0x03,
0x00, 0x21, 0x45, 0x00, 0x00, 0x50, 0xf4, 0x05,
0x40, 0x00, 0x3f, 0x06, 0x20, 0xb8, 0x50, 0x7e,
0x2b, 0x2d, 0xd4, 0xcc, 0xd6, 0x72, 0x0a, 0x92,
0x1a, 0x0b, 0xc9, 0xaf, 0x24, 0x02, 0x8c, 0xdd,
0x45, 0xf6, 0x80, 0x18, 0x21, 0xfc, 0x10, 0x7c,
0x00, 0x00, 0x01, 0x01, 0x08, 0x0a, 0x08, 0x19,
0x1a, 0xda, 0x84, 0xd6, 0xda, 0x3e, 0x50, 0x49,
0x4e, 0x47, 0x20, 0x73, 0x74, 0x65, 0x72, 0x6c,
0x69, 0x6e, 0x67, 0x2e, 0x66, 0x72, 0x65, 0x65,
0x6e, 0x6f, 0x64, 0x65, 0x2e, 0x6e, 0x65, 0x74,
0x0d, 0x0a};
Packet *p = PacketGetFromAlloc();
Packet *pkt;
if (unlikely(p == NULL))
return 0;
int ret;
memset(&dtv, 0, sizeof(DecodeThreadVars));
memset(&tv, 0, sizeof(ThreadVars));
memset(&pq, 0, sizeof(PacketQueue));
memset(&s, 0, sizeof(Signature));
p->alerts.cnt++;
s.id = 1;
s.gid = 1;
s.rev = 1;
p->alerts.alerts[p->alerts.cnt-1].s = &s;
SET_PKT_LEN(p, sizeof(raw_gre));
FlowInitConfig(FLOW_QUIET);
DecodeEthernet(&tv, &dtv, p, raw_gre, sizeof(raw_gre), &pq);
oc = Unified2AlertInitCtx(NULL);
if (oc.ctx == NULL) {
goto end;
}
uaf = oc.ctx->data;
if (uaf == NULL)
return 0;
lf = uaf->file_ctx;
if(lf == NULL) {
goto end;
}
ret = Unified2AlertThreadInit(&tv, oc.ctx, &data);
if(ret == -1) {
goto end;
}
ret = Unified2Logger(&tv, data, p);
if(ret == TM_ECODE_FAILED) {
goto end;
}
ret = Unified2AlertThreadDeinit(&tv, data);
if(ret == -1) {
goto end;
}
Unified2AlertDeInitCtx(oc.ctx);
pkt = PacketDequeue(&pq);
while (pkt != NULL) {
PACKET_RECYCLE(pkt);
SCFree(pkt);
pkt = PacketDequeue(&pq);
}
PACKET_RECYCLE(p);
SCFree(p);
FlowShutdown();
return 1;
end:
pkt = PacketDequeue(&pq);
while (pkt != NULL) {
PACKET_RECYCLE(pkt);
SCFree(pkt);
pkt = PacketDequeue(&pq);
}
PACKET_RECYCLE(p);
SCFree(p);
FlowShutdown();
return 0;
}
/**
* \test Test the PPP unified2 test
*
* \retval 1 on succces
* \retval 0 on failure
*/
static int Unified2Test04(void)
{
ThreadVars tv;
DecodeThreadVars dtv;
PacketQueue pq;
void *data = NULL;
OutputInitResult oc;
LogFileCtx *lf;
Unified2AlertFileCtx *uaf = NULL;
Signature s;
uint8_t raw_ppp[] = {
0xff, 0x03, 0x00, 0x21, 0x45, 0xc0, 0x00, 0x2c,
0x4d, 0xed, 0x00, 0x00, 0xff, 0x06, 0xd5, 0x17,
0xbf, 0x01, 0x0d, 0x01, 0xbf, 0x01, 0x0d, 0x03,
0xea, 0x37, 0x00, 0x17, 0x6d, 0x0b, 0xba, 0xc3,
0x00, 0x00, 0x00, 0x00, 0x60, 0x02, 0x10, 0x20,
0xdd, 0xe1, 0x00, 0x00, 0x02, 0x04, 0x05, 0xb4};
Packet *p = PacketGetFromAlloc();
if (unlikely(p == NULL))
return 0;
int ret;
memset(&dtv, 0, sizeof(DecodeThreadVars));
memset(&tv, 0, sizeof(ThreadVars));
memset(&pq, 0, sizeof(PacketQueue));
memset(&s, 0, sizeof(Signature));
p->alerts.cnt++;
s.id = 1;
s.gid = 1;
s.rev = 1;
p->alerts.alerts[p->alerts.cnt-1].s = &s;
SET_PKT_LEN(p, sizeof(raw_ppp));
FlowInitConfig(FLOW_QUIET);
DecodePPP(&tv, &dtv, p, raw_ppp, sizeof(raw_ppp), &pq);
oc = Unified2AlertInitCtx(NULL);
if (oc.ctx == NULL) {
goto end;
}
uaf = oc.ctx->data;
if (uaf == NULL)
return 0;
lf = uaf->file_ctx;
if(lf == NULL) {
goto end;
}
ret = Unified2AlertThreadInit(&tv, oc.ctx, &data);
if(ret == -1) {
goto end;
}
ret = Unified2Logger(&tv, data, p);
if(ret == TM_ECODE_FAILED) {
goto end;
}
ret = Unified2AlertThreadDeinit(&tv, data);
if(ret == -1) {
goto end;
}
Unified2AlertDeInitCtx(oc.ctx);
PACKET_RECYCLE(p);
SCFree(p);
FlowShutdown();
return 1;
end:
PACKET_RECYCLE(p);
SCFree(p);
FlowShutdown();
return 0;
}
/**
* \test Test the ethernet+ipv4+tcp droped unified2 test
*
* \retval 1 on succces
* \retval 0 on failure
*/
static int Unified2Test05(void)
{
ThreadVars tv;
DecodeThreadVars dtv;
PacketQueue pq;
void *data = NULL;
OutputInitResult oc;
LogFileCtx *lf;
Unified2AlertFileCtx *uaf = NULL;
Signature s;
uint8_t raw_ipv4_tcp[] = {
0x00, 0x14, 0xbf, 0xe8, 0xcb, 0x26, 0xaa, 0x00,
0x04, 0x00, 0x0a, 0x04, 0x08, 0x00, 0x45, 0x00,
0x00, 0x3c, 0x8c, 0x55, 0x40, 0x00, 0x40, 0x06,
0x69, 0x86, 0xc0, 0xa8, 0x0a, 0x68, 0x4a, 0x7d,
0x2f, 0x53, 0xc2, 0x40, 0x00, 0x50, 0x1f, 0x00,
0xa4, 0xd4, 0x00, 0x00, 0x00, 0x00, 0xa0, 0x02,
0x16, 0xd0, 0x3d, 0x4e, 0x00, 0x00, 0x02, 0x04,
0x05, 0xb4, 0x04, 0x02, 0x08, 0x0a, 0x00, 0x1c,
0x28, 0x81, 0x00, 0x00, 0x00, 0x00, 0x01, 0x03,
0x03, 0x06};
Packet *p = PacketGetFromAlloc();
if (unlikely(p == NULL))
return 0;
int ret;
memset(&dtv, 0, sizeof(DecodeThreadVars));
memset(&tv, 0, sizeof(ThreadVars));
memset(&pq, 0, sizeof(PacketQueue));
memset(&s, 0, sizeof(Signature));
p->alerts.cnt++;
s.id = 1;
s.gid = 1;
s.rev = 1;
p->alerts.alerts[p->alerts.cnt-1].s = &s;
SET_PKT_LEN(p, sizeof(raw_ipv4_tcp));
FlowInitConfig(FLOW_QUIET);
DecodeEthernet(&tv, &dtv, p, raw_ipv4_tcp, sizeof(raw_ipv4_tcp), &pq);
p->action = ACTION_DROP;
oc = Unified2AlertInitCtx(NULL);
if (oc.ctx == NULL) {
goto end;
}
uaf = oc.ctx->data;
if (uaf == NULL)
return 0;
lf = uaf->file_ctx;
if(lf == NULL) {
goto end;
}
ret = Unified2AlertThreadInit(&tv, oc.ctx, &data);
if(ret == -1) {
goto end;
}
ret = Unified2Logger(&tv, data, p);
if(ret == TM_ECODE_FAILED) {
goto end;
}
ret = Unified2AlertThreadDeinit(&tv, data);
if(ret == TM_ECODE_FAILED) {
goto end;
}
Unified2AlertDeInitCtx(oc.ctx);
PACKET_RECYCLE(p);
SCFree(p);
FlowShutdown();
return 1;
end:
PACKET_RECYCLE(p);
SCFree(p);
FlowShutdown();
return 0;
}
/**
* \test Test the Rotate process
*
* \retval 1 on succces
* \retval 0 on failure
*/
static int Unified2TestRotate01(void)
{
int ret = 0;
int r = 0;
ThreadVars tv;
OutputInitResult oc;
LogFileCtx *lf;
Unified2AlertFileCtx *uaf = NULL;
void *data = NULL;
char *filename = NULL;
oc = Unified2AlertInitCtx(NULL);
if (oc.ctx == NULL)
return 0;
uaf = oc.ctx->data;
if (uaf == NULL)
return 0;
lf = uaf->file_ctx;
if (lf == NULL)
return 0;
filename = SCStrdup(lf->filename);
if (unlikely(filename == NULL))
return 0;
memset(&tv, 0, sizeof(ThreadVars));
ret = Unified2AlertThreadInit(&tv, oc.ctx, &data);
if (ret == TM_ECODE_FAILED) {
LogFileFreeCtx(lf);
if (filename != NULL)
SCFree(filename);
return 0;
}
TimeSetIncrementTime(1);
ret = Unified2AlertRotateFile(data, false);
if (ret == -1)
goto error;
if (strcmp(filename, lf->filename) == 0) {
SCLogError(SC_ERR_UNIFIED2_ALERT_GENERIC,
"filename \"%s\" == \"%s\": ", filename, lf->filename);
goto error;
}
r = 1;
error:
ret = Unified2AlertThreadDeinit(&tv, data);
if(ret == TM_ECODE_FAILED) {
printf("Unified2AlertThreadDeinit error");
}
if (oc.ctx != NULL)
Unified2AlertDeInitCtx(oc.ctx);
if (filename != NULL)
SCFree(filename);
return r;
}
#endif
/**
* \brief this function registers unit tests for Unified2
*/
void Unified2RegisterTests(void)
{
#ifdef UNITTESTS
UtRegisterTest("Unified2Test01 -- Ipv4 test", Unified2Test01);
UtRegisterTest("Unified2Test02 -- Ipv6 test", Unified2Test02);
UtRegisterTest("Unified2Test03 -- GRE test", Unified2Test03);
UtRegisterTest("Unified2Test04 -- PPP test", Unified2Test04);
UtRegisterTest("Unified2Test05 -- Inline test", Unified2Test05);
UtRegisterTest("Unified2TestRotate01 -- Rotate File",
Unified2TestRotate01);
#endif /* UNITTESTS */
}