mirror of https://github.com/OISF/suricata
You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
691 lines
20 KiB
C
691 lines
20 KiB
C
/* Copyright (C) 2007-2013 Open Information Security Foundation
|
|
*
|
|
* You can copy, redistribute or modify this Program under the terms of
|
|
* the GNU General Public License version 2 as published by the Free
|
|
* Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* version 2 along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
|
|
* 02110-1301, USA.
|
|
*/
|
|
|
|
/**
|
|
* \file
|
|
*
|
|
* \author Victor Julien <victor@inliniac.net>
|
|
* \author Pablo Rincon Crespo <pablo.rincon.crespo@gmail.com>
|
|
*
|
|
* Flow Hashing functions.
|
|
*/
|
|
|
|
#include "suricata-common.h"
|
|
#include "threads.h"
|
|
|
|
#include "decode.h"
|
|
#include "detect-engine-state.h"
|
|
|
|
#include "flow.h"
|
|
#include "flow-hash.h"
|
|
#include "flow-util.h"
|
|
#include "flow-private.h"
|
|
#include "flow-manager.h"
|
|
#include "flow-storage.h"
|
|
#include "app-layer-parser.h"
|
|
|
|
#include "util-time.h"
|
|
#include "util-debug.h"
|
|
|
|
#include "util-hash-lookup3.h"
|
|
|
|
#include "conf.h"
|
|
#include "output.h"
|
|
#include "output-flow.h"
|
|
|
|
#define FLOW_DEFAULT_FLOW_PRUNE 5
|
|
|
|
SC_ATOMIC_EXTERN(unsigned int, flow_prune_idx);
|
|
SC_ATOMIC_EXTERN(unsigned int, flow_flags);
|
|
|
|
static Flow *FlowGetUsedFlow(ThreadVars *tv, DecodeThreadVars *dtv);
|
|
|
|
/** \brief compare two raw ipv6 addrs
|
|
*
|
|
* \note we don't care about the real ipv6 ip's, this is just
|
|
* to consistently fill the FlowHashKey6 struct, without all
|
|
* the SCNtohl calls.
|
|
*
|
|
* \warning do not use elsewhere unless you know what you're doing.
|
|
* detect-engine-address-ipv6.c's AddressIPv6GtU32 is likely
|
|
* what you are looking for.
|
|
*/
|
|
static inline int FlowHashRawAddressIPv6GtU32(const uint32_t *a, const uint32_t *b)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
if (a[i] > b[i])
|
|
return 1;
|
|
if (a[i] < b[i])
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
typedef struct FlowHashKey4_ {
|
|
union {
|
|
struct {
|
|
uint32_t addrs[2];
|
|
uint16_t ports[2];
|
|
uint16_t proto; /**< u16 so proto and recur add up to u32 */
|
|
uint16_t recur; /**< u16 so proto and recur add up to u32 */
|
|
uint16_t vlan_id[2];
|
|
};
|
|
const uint32_t u32[5];
|
|
};
|
|
} FlowHashKey4;
|
|
|
|
typedef struct FlowHashKey6_ {
|
|
union {
|
|
struct {
|
|
uint32_t src[4], dst[4];
|
|
uint16_t ports[2];
|
|
uint16_t proto; /**< u16 so proto and recur add up to u32 */
|
|
uint16_t recur; /**< u16 so proto and recur add up to u32 */
|
|
uint16_t vlan_id[2];
|
|
};
|
|
const uint32_t u32[11];
|
|
};
|
|
} FlowHashKey6;
|
|
|
|
/* calculate the hash key for this packet
|
|
*
|
|
* we're using:
|
|
* hash_rand -- set at init time
|
|
* source port
|
|
* destination port
|
|
* source address
|
|
* destination address
|
|
* recursion level -- for tunnels, make sure different tunnel layers can
|
|
* never get mixed up.
|
|
*
|
|
* For ICMP we only consider UNREACHABLE errors atm.
|
|
*/
|
|
static inline uint32_t FlowGetHash(const Packet *p)
|
|
{
|
|
uint32_t hash = 0;
|
|
|
|
if (p->ip4h != NULL) {
|
|
if (p->tcph != NULL || p->udph != NULL) {
|
|
FlowHashKey4 fhk;
|
|
|
|
int ai = (p->src.addr_data32[0] > p->dst.addr_data32[0]);
|
|
fhk.addrs[1-ai] = p->src.addr_data32[0];
|
|
fhk.addrs[ai] = p->dst.addr_data32[0];
|
|
|
|
const int pi = (p->sp > p->dp);
|
|
fhk.ports[1-pi] = p->sp;
|
|
fhk.ports[pi] = p->dp;
|
|
|
|
fhk.proto = (uint16_t)p->proto;
|
|
fhk.recur = (uint16_t)p->recursion_level;
|
|
fhk.vlan_id[0] = p->vlan_id[0];
|
|
fhk.vlan_id[1] = p->vlan_id[1];
|
|
|
|
hash = hashword(fhk.u32, 5, flow_config.hash_rand);
|
|
|
|
} else if (ICMPV4_DEST_UNREACH_IS_VALID(p)) {
|
|
uint32_t psrc = IPV4_GET_RAW_IPSRC_U32(ICMPV4_GET_EMB_IPV4(p));
|
|
uint32_t pdst = IPV4_GET_RAW_IPDST_U32(ICMPV4_GET_EMB_IPV4(p));
|
|
FlowHashKey4 fhk;
|
|
|
|
const int ai = (psrc > pdst);
|
|
fhk.addrs[1-ai] = psrc;
|
|
fhk.addrs[ai] = pdst;
|
|
|
|
const int pi = (p->icmpv4vars.emb_sport > p->icmpv4vars.emb_dport);
|
|
fhk.ports[1-pi] = p->icmpv4vars.emb_sport;
|
|
fhk.ports[pi] = p->icmpv4vars.emb_dport;
|
|
|
|
fhk.proto = (uint16_t)ICMPV4_GET_EMB_PROTO(p);
|
|
fhk.recur = (uint16_t)p->recursion_level;
|
|
fhk.vlan_id[0] = p->vlan_id[0];
|
|
fhk.vlan_id[1] = p->vlan_id[1];
|
|
|
|
hash = hashword(fhk.u32, 5, flow_config.hash_rand);
|
|
|
|
} else {
|
|
FlowHashKey4 fhk;
|
|
const int ai = (p->src.addr_data32[0] > p->dst.addr_data32[0]);
|
|
fhk.addrs[1-ai] = p->src.addr_data32[0];
|
|
fhk.addrs[ai] = p->dst.addr_data32[0];
|
|
fhk.ports[0] = 0xfeed;
|
|
fhk.ports[1] = 0xbeef;
|
|
fhk.proto = (uint16_t)p->proto;
|
|
fhk.recur = (uint16_t)p->recursion_level;
|
|
fhk.vlan_id[0] = p->vlan_id[0];
|
|
fhk.vlan_id[1] = p->vlan_id[1];
|
|
|
|
hash = hashword(fhk.u32, 5, flow_config.hash_rand);
|
|
}
|
|
} else if (p->ip6h != NULL) {
|
|
FlowHashKey6 fhk;
|
|
if (FlowHashRawAddressIPv6GtU32(p->src.addr_data32, p->dst.addr_data32)) {
|
|
fhk.src[0] = p->src.addr_data32[0];
|
|
fhk.src[1] = p->src.addr_data32[1];
|
|
fhk.src[2] = p->src.addr_data32[2];
|
|
fhk.src[3] = p->src.addr_data32[3];
|
|
fhk.dst[0] = p->dst.addr_data32[0];
|
|
fhk.dst[1] = p->dst.addr_data32[1];
|
|
fhk.dst[2] = p->dst.addr_data32[2];
|
|
fhk.dst[3] = p->dst.addr_data32[3];
|
|
} else {
|
|
fhk.src[0] = p->dst.addr_data32[0];
|
|
fhk.src[1] = p->dst.addr_data32[1];
|
|
fhk.src[2] = p->dst.addr_data32[2];
|
|
fhk.src[3] = p->dst.addr_data32[3];
|
|
fhk.dst[0] = p->src.addr_data32[0];
|
|
fhk.dst[1] = p->src.addr_data32[1];
|
|
fhk.dst[2] = p->src.addr_data32[2];
|
|
fhk.dst[3] = p->src.addr_data32[3];
|
|
}
|
|
|
|
const int pi = (p->sp > p->dp);
|
|
fhk.ports[1-pi] = p->sp;
|
|
fhk.ports[pi] = p->dp;
|
|
fhk.proto = (uint16_t)p->proto;
|
|
fhk.recur = (uint16_t)p->recursion_level;
|
|
fhk.vlan_id[0] = p->vlan_id[0];
|
|
fhk.vlan_id[1] = p->vlan_id[1];
|
|
|
|
hash = hashword(fhk.u32, 11, flow_config.hash_rand);
|
|
}
|
|
|
|
return hash;
|
|
}
|
|
|
|
/* Since two or more flows can have the same hash key, we need to compare
|
|
* the flow with the current flow key. */
|
|
#define CMP_FLOW(f1,f2) \
|
|
(((CMP_ADDR(&(f1)->src, &(f2)->src) && \
|
|
CMP_ADDR(&(f1)->dst, &(f2)->dst) && \
|
|
CMP_PORT((f1)->sp, (f2)->sp) && CMP_PORT((f1)->dp, (f2)->dp)) || \
|
|
(CMP_ADDR(&(f1)->src, &(f2)->dst) && \
|
|
CMP_ADDR(&(f1)->dst, &(f2)->src) && \
|
|
CMP_PORT((f1)->sp, (f2)->dp) && CMP_PORT((f1)->dp, (f2)->sp))) && \
|
|
(f1)->proto == (f2)->proto && \
|
|
(f1)->recursion_level == (f2)->recursion_level && \
|
|
(f1)->vlan_id[0] == (f2)->vlan_id[0] && \
|
|
(f1)->vlan_id[1] == (f2)->vlan_id[1])
|
|
|
|
/**
|
|
* \brief See if a ICMP packet belongs to a flow by comparing the embedded
|
|
* packet in the ICMP error packet to the flow.
|
|
*
|
|
* \param f flow
|
|
* \param p ICMP packet
|
|
*
|
|
* \retval 1 match
|
|
* \retval 0 no match
|
|
*/
|
|
static inline int FlowCompareICMPv4(Flow *f, const Packet *p)
|
|
{
|
|
if (ICMPV4_DEST_UNREACH_IS_VALID(p)) {
|
|
/* first check the direction of the flow, in other words, the client ->
|
|
* server direction as it's most likely the ICMP error will be a
|
|
* response to the clients traffic */
|
|
if ((f->src.addr_data32[0] == IPV4_GET_RAW_IPSRC_U32( ICMPV4_GET_EMB_IPV4(p) )) &&
|
|
(f->dst.addr_data32[0] == IPV4_GET_RAW_IPDST_U32( ICMPV4_GET_EMB_IPV4(p) )) &&
|
|
f->sp == p->icmpv4vars.emb_sport &&
|
|
f->dp == p->icmpv4vars.emb_dport &&
|
|
f->proto == ICMPV4_GET_EMB_PROTO(p) &&
|
|
f->recursion_level == p->recursion_level &&
|
|
f->vlan_id[0] == p->vlan_id[0] &&
|
|
f->vlan_id[1] == p->vlan_id[1])
|
|
{
|
|
return 1;
|
|
|
|
/* check the less likely case where the ICMP error was a response to
|
|
* a packet from the server. */
|
|
} else if ((f->dst.addr_data32[0] == IPV4_GET_RAW_IPSRC_U32( ICMPV4_GET_EMB_IPV4(p) )) &&
|
|
(f->src.addr_data32[0] == IPV4_GET_RAW_IPDST_U32( ICMPV4_GET_EMB_IPV4(p) )) &&
|
|
f->dp == p->icmpv4vars.emb_sport &&
|
|
f->sp == p->icmpv4vars.emb_dport &&
|
|
f->proto == ICMPV4_GET_EMB_PROTO(p) &&
|
|
f->recursion_level == p->recursion_level &&
|
|
f->vlan_id[0] == p->vlan_id[0] &&
|
|
f->vlan_id[1] == p->vlan_id[1])
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
/* no match, fall through */
|
|
} else {
|
|
/* just treat ICMP as a normal proto for now */
|
|
return CMP_FLOW(f, p);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void FlowSetupPacket(Packet *p)
|
|
{
|
|
p->flags |= PKT_WANTS_FLOW;
|
|
p->flow_hash = FlowGetHash(p);
|
|
}
|
|
|
|
int TcpSessionPacketSsnReuse(const Packet *p, const Flow *f, void *tcp_ssn);
|
|
|
|
static inline int FlowCompare(Flow *f, const Packet *p)
|
|
{
|
|
if (p->proto == IPPROTO_ICMP) {
|
|
return FlowCompareICMPv4(f, p);
|
|
} else if (p->proto == IPPROTO_TCP) {
|
|
if (CMP_FLOW(f, p) == 0)
|
|
return 0;
|
|
|
|
/* if this session is 'reused', we don't return it anymore,
|
|
* so return false on the compare */
|
|
if (f->flags & FLOW_TCP_REUSED)
|
|
return 0;
|
|
|
|
return 1;
|
|
} else {
|
|
return CMP_FLOW(f, p);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* \brief Check if we should create a flow based on a packet
|
|
*
|
|
* We use this check to filter out flow creation based on:
|
|
* - ICMP error messages
|
|
*
|
|
* \param p packet
|
|
* \retval 1 true
|
|
* \retval 0 false
|
|
*/
|
|
static inline int FlowCreateCheck(const Packet *p)
|
|
{
|
|
if (PKT_IS_ICMPV4(p)) {
|
|
if (ICMPV4_IS_ERROR_MSG(p)) {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static inline void FlowUpdateCounter(ThreadVars *tv, DecodeThreadVars *dtv,
|
|
uint8_t proto)
|
|
{
|
|
#ifdef UNITTESTS
|
|
if (tv && dtv) {
|
|
#endif
|
|
switch (proto){
|
|
case IPPROTO_UDP:
|
|
StatsIncr(tv, dtv->counter_flow_udp);
|
|
break;
|
|
case IPPROTO_TCP:
|
|
StatsIncr(tv, dtv->counter_flow_tcp);
|
|
break;
|
|
case IPPROTO_ICMP:
|
|
StatsIncr(tv, dtv->counter_flow_icmp4);
|
|
break;
|
|
case IPPROTO_ICMPV6:
|
|
StatsIncr(tv, dtv->counter_flow_icmp6);
|
|
break;
|
|
}
|
|
#ifdef UNITTESTS
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* \brief Get a new flow
|
|
*
|
|
* Get a new flow. We're checking memcap first and will try to make room
|
|
* if the memcap is reached.
|
|
*
|
|
* \param tv thread vars
|
|
* \param dtv decode thread vars (for flow log api thread data)
|
|
*
|
|
* \retval f *LOCKED* flow on succes, NULL on error.
|
|
*/
|
|
static Flow *FlowGetNew(ThreadVars *tv, DecodeThreadVars *dtv, const Packet *p)
|
|
{
|
|
Flow *f = NULL;
|
|
|
|
if (FlowCreateCheck(p) == 0) {
|
|
return NULL;
|
|
}
|
|
|
|
/* get a flow from the spare queue */
|
|
f = FlowDequeue(&flow_spare_q);
|
|
if (f == NULL) {
|
|
/* If we reached the max memcap, we get a used flow */
|
|
if (!(FLOW_CHECK_MEMCAP(sizeof(Flow) + FlowStorageSize()))) {
|
|
/* declare state of emergency */
|
|
if (!(SC_ATOMIC_GET(flow_flags) & FLOW_EMERGENCY)) {
|
|
SC_ATOMIC_OR(flow_flags, FLOW_EMERGENCY);
|
|
|
|
FlowTimeoutsEmergency();
|
|
|
|
/* under high load, waking up the flow mgr each time leads
|
|
* to high cpu usage. Flows are not timed out much faster if
|
|
* we check a 1000 times a second. */
|
|
FlowWakeupFlowManagerThread();
|
|
}
|
|
|
|
f = FlowGetUsedFlow(tv, dtv);
|
|
if (f == NULL) {
|
|
/* max memcap reached, so increments the counter */
|
|
if (tv != NULL && dtv != NULL) {
|
|
StatsIncr(tv, dtv->counter_flow_memcap);
|
|
}
|
|
|
|
/* very rare, but we can fail. Just giving up */
|
|
return NULL;
|
|
}
|
|
|
|
/* freed a flow, but it's unlocked */
|
|
} else {
|
|
/* now see if we can alloc a new flow */
|
|
f = FlowAlloc();
|
|
if (f == NULL) {
|
|
if (tv != NULL && dtv != NULL) {
|
|
StatsIncr(tv, dtv->counter_flow_memcap);
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/* flow is initialized but *unlocked* */
|
|
}
|
|
} else {
|
|
/* flow has been recycled before it went into the spare queue */
|
|
|
|
/* flow is initialized (recylced) but *unlocked* */
|
|
}
|
|
|
|
FLOWLOCK_WRLOCK(f);
|
|
FlowUpdateCounter(tv, dtv, p->proto);
|
|
return f;
|
|
}
|
|
|
|
static Flow *TcpReuseReplace(ThreadVars *tv, DecodeThreadVars *dtv,
|
|
FlowBucket *fb, Flow *old_f,
|
|
const uint32_t hash, const Packet *p)
|
|
{
|
|
/* tag flow as reused so future lookups won't find it */
|
|
old_f->flags |= FLOW_TCP_REUSED;
|
|
/* get some settings that we move over to the new flow */
|
|
FlowThreadId thread_id = old_f->thread_id;
|
|
|
|
/* since fb lock is still held this flow won't be found until we are done */
|
|
FLOWLOCK_UNLOCK(old_f);
|
|
|
|
/* Get a new flow. It will be either a locked flow or NULL */
|
|
Flow *f = FlowGetNew(tv, dtv, p);
|
|
if (f == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
/* flow is locked */
|
|
|
|
/* put at the start of the list */
|
|
f->hnext = fb->head;
|
|
fb->head->hprev = f;
|
|
fb->head = f;
|
|
|
|
/* initialize and return */
|
|
FlowInit(f, p);
|
|
f->flow_hash = hash;
|
|
f->fb = fb;
|
|
|
|
f->thread_id = thread_id;
|
|
return f;
|
|
}
|
|
|
|
/** \brief Get Flow for packet
|
|
*
|
|
* Hash retrieval function for flows. Looks up the hash bucket containing the
|
|
* flow pointer. Then compares the packet with the found flow to see if it is
|
|
* the flow we need. If it isn't, walk the list until the right flow is found.
|
|
*
|
|
* If the flow is not found or the bucket was emtpy, a new flow is taken from
|
|
* the queue. FlowDequeue() will alloc new flows as long as we stay within our
|
|
* memcap limit.
|
|
*
|
|
* The p->flow pointer is updated to point to the flow.
|
|
*
|
|
* \param tv thread vars
|
|
* \param dtv decode thread vars (for flow log api thread data)
|
|
*
|
|
* \retval f *LOCKED* flow or NULL
|
|
*/
|
|
Flow *FlowGetFlowFromHash(ThreadVars *tv, DecodeThreadVars *dtv, const Packet *p, Flow **dest)
|
|
{
|
|
Flow *f = NULL;
|
|
|
|
/* get our hash bucket and lock it */
|
|
const uint32_t hash = p->flow_hash;
|
|
FlowBucket *fb = &flow_hash[hash % flow_config.hash_size];
|
|
FBLOCK_LOCK(fb);
|
|
|
|
SCLogDebug("fb %p fb->head %p", fb, fb->head);
|
|
|
|
/* see if the bucket already has a flow */
|
|
if (fb->head == NULL) {
|
|
f = FlowGetNew(tv, dtv, p);
|
|
if (f == NULL) {
|
|
FBLOCK_UNLOCK(fb);
|
|
return NULL;
|
|
}
|
|
|
|
/* flow is locked */
|
|
fb->head = f;
|
|
fb->tail = f;
|
|
|
|
/* got one, now lock, initialize and return */
|
|
FlowInit(f, p);
|
|
f->flow_hash = hash;
|
|
f->fb = fb;
|
|
FlowUpdateState(f, FLOW_STATE_NEW);
|
|
|
|
FlowReference(dest, f);
|
|
|
|
FBLOCK_UNLOCK(fb);
|
|
return f;
|
|
}
|
|
|
|
/* ok, we have a flow in the bucket. Let's find out if it is our flow */
|
|
f = fb->head;
|
|
|
|
/* see if this is the flow we are looking for */
|
|
if (FlowCompare(f, p) == 0) {
|
|
Flow *pf = NULL; /* previous flow */
|
|
|
|
while (f) {
|
|
pf = f;
|
|
f = f->hnext;
|
|
|
|
if (f == NULL) {
|
|
f = pf->hnext = FlowGetNew(tv, dtv, p);
|
|
if (f == NULL) {
|
|
FBLOCK_UNLOCK(fb);
|
|
return NULL;
|
|
}
|
|
fb->tail = f;
|
|
|
|
/* flow is locked */
|
|
|
|
f->hprev = pf;
|
|
|
|
/* initialize and return */
|
|
FlowInit(f, p);
|
|
f->flow_hash = hash;
|
|
f->fb = fb;
|
|
FlowUpdateState(f, FLOW_STATE_NEW);
|
|
|
|
FlowReference(dest, f);
|
|
|
|
FBLOCK_UNLOCK(fb);
|
|
return f;
|
|
}
|
|
|
|
if (FlowCompare(f, p) != 0) {
|
|
/* we found our flow, lets put it on top of the
|
|
* hash list -- this rewards active flows */
|
|
if (f->hnext) {
|
|
f->hnext->hprev = f->hprev;
|
|
}
|
|
if (f->hprev) {
|
|
f->hprev->hnext = f->hnext;
|
|
}
|
|
if (f == fb->tail) {
|
|
fb->tail = f->hprev;
|
|
}
|
|
|
|
f->hnext = fb->head;
|
|
f->hprev = NULL;
|
|
fb->head->hprev = f;
|
|
fb->head = f;
|
|
|
|
/* found our flow, lock & return */
|
|
FLOWLOCK_WRLOCK(f);
|
|
if (unlikely(TcpSessionPacketSsnReuse(p, f, f->protoctx) == 1)) {
|
|
f = TcpReuseReplace(tv, dtv, fb, f, hash, p);
|
|
if (f == NULL) {
|
|
FBLOCK_UNLOCK(fb);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
FlowReference(dest, f);
|
|
|
|
FBLOCK_UNLOCK(fb);
|
|
return f;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* lock & return */
|
|
FLOWLOCK_WRLOCK(f);
|
|
if (unlikely(TcpSessionPacketSsnReuse(p, f, f->protoctx) == 1)) {
|
|
f = TcpReuseReplace(tv, dtv, fb, f, hash, p);
|
|
if (f == NULL) {
|
|
FBLOCK_UNLOCK(fb);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
FlowReference(dest, f);
|
|
|
|
FBLOCK_UNLOCK(fb);
|
|
return f;
|
|
}
|
|
|
|
/** \internal
|
|
* \brief Get a flow from the hash directly.
|
|
*
|
|
* Called in conditions where the spare queue is empty and memcap is reached.
|
|
*
|
|
* Walks the hash until a flow can be freed. Timeouts are disregarded, use_cnt
|
|
* is adhered to. "flow_prune_idx" atomic int makes sure we don't start at the
|
|
* top each time since that would clear the top of the hash leading to longer
|
|
* and longer search times under high pressure (observed).
|
|
*
|
|
* \param tv thread vars
|
|
* \param dtv decode thread vars (for flow log api thread data)
|
|
*
|
|
* \retval f flow or NULL
|
|
*/
|
|
static Flow *FlowGetUsedFlow(ThreadVars *tv, DecodeThreadVars *dtv)
|
|
{
|
|
uint32_t idx = SC_ATOMIC_GET(flow_prune_idx) % flow_config.hash_size;
|
|
uint32_t cnt = flow_config.hash_size;
|
|
|
|
while (cnt--) {
|
|
if (++idx >= flow_config.hash_size)
|
|
idx = 0;
|
|
|
|
FlowBucket *fb = &flow_hash[idx];
|
|
|
|
if (FBLOCK_TRYLOCK(fb) != 0)
|
|
continue;
|
|
|
|
Flow *f = fb->tail;
|
|
if (f == NULL) {
|
|
FBLOCK_UNLOCK(fb);
|
|
continue;
|
|
}
|
|
|
|
if (FLOWLOCK_TRYWRLOCK(f) != 0) {
|
|
FBLOCK_UNLOCK(fb);
|
|
continue;
|
|
}
|
|
|
|
/** never prune a flow that is used by a packet or stream msg
|
|
* we are currently processing in one of the threads */
|
|
if (SC_ATOMIC_GET(f->use_cnt) > 0) {
|
|
FBLOCK_UNLOCK(fb);
|
|
FLOWLOCK_UNLOCK(f);
|
|
continue;
|
|
}
|
|
|
|
/* remove from the hash */
|
|
if (f->hprev != NULL)
|
|
f->hprev->hnext = f->hnext;
|
|
if (f->hnext != NULL)
|
|
f->hnext->hprev = f->hprev;
|
|
if (fb->head == f)
|
|
fb->head = f->hnext;
|
|
if (fb->tail == f)
|
|
fb->tail = f->hprev;
|
|
|
|
f->hnext = NULL;
|
|
f->hprev = NULL;
|
|
f->fb = NULL;
|
|
SC_ATOMIC_SET(fb->next_ts, 0);
|
|
FBLOCK_UNLOCK(fb);
|
|
|
|
int state = SC_ATOMIC_GET(f->flow_state);
|
|
if (state == FLOW_STATE_NEW)
|
|
f->flow_end_flags |= FLOW_END_FLAG_STATE_NEW;
|
|
else if (state == FLOW_STATE_ESTABLISHED)
|
|
f->flow_end_flags |= FLOW_END_FLAG_STATE_ESTABLISHED;
|
|
else if (state == FLOW_STATE_CLOSED)
|
|
f->flow_end_flags |= FLOW_END_FLAG_STATE_CLOSED;
|
|
else if (state == FLOW_STATE_CAPTURE_BYPASSED)
|
|
f->flow_end_flags |= FLOW_END_FLAG_STATE_BYPASSED;
|
|
else if (state == FLOW_STATE_LOCAL_BYPASSED)
|
|
f->flow_end_flags |= FLOW_END_FLAG_STATE_BYPASSED;
|
|
|
|
f->flow_end_flags |= FLOW_END_FLAG_FORCED;
|
|
|
|
if (SC_ATOMIC_GET(flow_flags) & FLOW_EMERGENCY)
|
|
f->flow_end_flags |= FLOW_END_FLAG_EMERGENCY;
|
|
|
|
/* invoke flow log api */
|
|
if (dtv && dtv->output_flow_thread_data)
|
|
(void)OutputFlowLog(tv, dtv->output_flow_thread_data, f);
|
|
|
|
FlowClearMemory(f, f->protomap);
|
|
|
|
FlowUpdateState(f, FLOW_STATE_NEW);
|
|
|
|
FLOWLOCK_UNLOCK(f);
|
|
|
|
(void) SC_ATOMIC_ADD(flow_prune_idx, (flow_config.hash_size - cnt));
|
|
return f;
|
|
}
|
|
|
|
return NULL;
|
|
}
|