You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
suricata/src/util-ebpf.c

1079 lines
35 KiB
C

/* Copyright (C) 2018-2019 Open Information Security Foundation
*
* You can copy, redistribute or modify this Program under the terms of
* the GNU General Public License version 2 as published by the Free
* Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* version 2 along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA.
*/
/**
* \ingroup afppacket
*
* @{
*/
/**
* \file
*
* \author Eric Leblond <eric@regit.org>
*
* eBPF utility
*
*/
#define PCAP_DONT_INCLUDE_PCAP_BPF_H 1
#define SC_PCAP_DONT_INCLUDE_PCAP_H 1
#include "suricata-common.h"
#include "flow-bypass.h"
#ifdef HAVE_PACKET_EBPF
#include <sys/time.h>
#include <sys/resource.h>
#include "util-ebpf.h"
#include "util-cpu.h"
#include "util-device.h"
#include "device-storage.h"
#include "flow-storage.h"
#include "flow.h"
#include "flow-hash.h"
#include "tm-threads.h"
#include <bpf/libbpf.h>
#include <bpf/bpf.h>
#include <net/if.h>
#include "config.h"
#define BPF_MAP_MAX_COUNT 16
#define BYPASSED_FLOW_TIMEOUT 60
static int g_livedev_storage_id = -1;
static int g_flow_storage_id = -1;
struct bpf_map_item {
char iface[IFNAMSIZ];
char * name;
int fd;
uint8_t to_unlink;
};
struct bpf_maps_info {
struct bpf_map_item array[BPF_MAP_MAX_COUNT];
int last;
};
typedef struct BypassedIfaceList_ {
LiveDevice *dev;
struct BypassedIfaceList_ *next;
} BypassedIfaceList;
static void BpfMapsInfoFree(void *bpf)
{
struct bpf_maps_info *bpfinfo = (struct bpf_maps_info *)bpf;
int i;
for (i = 0; i < bpfinfo->last; i ++) {
if (bpfinfo->array[i].name) {
if (bpfinfo->array[i].to_unlink) {
char pinnedpath[PATH_MAX];
int ret = snprintf(pinnedpath, sizeof(pinnedpath),
"/sys/fs/bpf/suricata-%s-%s",
bpfinfo->array[i].iface,
bpfinfo->array[i].name);
if (ret > 0) {
/* Unlink the pinned entry */
ret = unlink(pinnedpath);
if (ret == -1) {
int error = errno;
SCLogWarning(SC_ERR_SYSCALL,
"Unable to remove %s: %s (%d)",
pinnedpath,
strerror(error),
error);
}
} else {
SCLogWarning(SC_ERR_SPRINTF, "Unable to remove map %s",
bpfinfo->array[i].name);
}
}
SCFree(bpfinfo->array[i].name);
}
}
SCFree(bpfinfo);
}
static void BypassedListFree(void *ifl)
{
BypassedIfaceList *mifl = (BypassedIfaceList *)ifl;
BypassedIfaceList *nifl;
while (mifl) {
nifl = mifl->next;
SCFree(mifl);
mifl = nifl;
}
}
void EBPFDeleteKey(int fd, void *key)
{
int ret = bpf_map_delete_elem(fd, key);
if (ret < 0) {
SCLogWarning(SC_ERR_SYSCALL,
"Unable to delete entry: %s (%d)",
strerror(errno),
errno);
}
}
static struct bpf_maps_info *EBPFGetBpfMap(const char *iface)
{
LiveDevice *livedev = LiveGetDevice(iface);
if (livedev == NULL)
return NULL;
void *data = LiveDevGetStorageById(livedev, g_livedev_storage_id);
return (struct bpf_maps_info *)data;
}
/**
* Get file descriptor of a map in the scope of a interface
*
* \param iface the interface where the map need to be looked for
* \param name the name of the map
* \return the file descriptor or -1 in case of error
*/
int EBPFGetMapFDByName(const char *iface, const char *name)
{
int i;
if (iface == NULL || name == NULL)
return -1;
struct bpf_maps_info *bpf_maps = EBPFGetBpfMap(iface);
if (bpf_maps == NULL)
return -1;
for (i = 0; i < BPF_MAP_MAX_COUNT; i++) {
if (!bpf_maps->array[i].name)
continue;
if (!strcmp(bpf_maps->array[i].name, name)) {
SCLogDebug("Got fd %d for eBPF map '%s'", bpf_maps->array[i].fd, name);
return bpf_maps->array[i].fd;
}
}
return -1;
}
static int EBPFLoadPinnedMapsFile(LiveDevice *livedev, const char *file)
{
char pinnedpath[1024];
snprintf(pinnedpath, sizeof(pinnedpath),
"/sys/fs/bpf/suricata-%s-%s",
livedev->dev,
file);
return bpf_obj_get(pinnedpath);
}
static int EBPFLoadPinnedMaps(LiveDevice *livedev, struct ebpf_timeout_config *config)
{
int fd_v4 = -1, fd_v6 = -1;
/* First try to load the eBPF check map and return if found */
if (config->pinned_maps_name) {
int ret = EBPFLoadPinnedMapsFile(livedev, config->pinned_maps_name);
if (ret == 0) {
/* pinned maps found, let's just exit as XDP filter is in place */
return ret;
}
}
if (config->mode == AFP_MODE_XDP_BYPASS) {
/* Get flow v4 table */
fd_v4 = EBPFLoadPinnedMapsFile(livedev, "flow_table_v4");
if (fd_v4 < 0) {
return fd_v4;
}
/* Get flow v6 table */
fd_v6 = EBPFLoadPinnedMapsFile(livedev, "flow_table_v6");
if (fd_v6 < 0) {
SCLogWarning(SC_ERR_INVALID_ARGUMENT,
"Found a flow_table_v4 map but no flow_table_v6 map");
return fd_v6;
}
}
struct bpf_maps_info *bpf_map_data = SCCalloc(1, sizeof(*bpf_map_data));
if (bpf_map_data == NULL) {
SCLogError(SC_ERR_MEM_ALLOC, "Can't allocate bpf map array");
return -1;
}
if (config->mode == AFP_MODE_XDP_BYPASS) {
bpf_map_data->array[0].fd = fd_v4;
bpf_map_data->array[0].name = SCStrdup("flow_table_v4");
if (bpf_map_data->array[0].name == NULL) {
goto alloc_error;
}
bpf_map_data->array[1].fd = fd_v6;
bpf_map_data->array[1].name = SCStrdup("flow_table_v6");
if (bpf_map_data->array[1].name == NULL) {
goto alloc_error;
}
bpf_map_data->last = 2;
} else {
bpf_map_data->last = 0;
}
/* Load other known maps: cpu_map, cpus_available, tx_peer, tx_peer_int */
int fd = EBPFLoadPinnedMapsFile(livedev, "cpu_map");
if (fd >= 0) {
bpf_map_data->array[bpf_map_data->last].fd = fd;
bpf_map_data->array[bpf_map_data->last].name = SCStrdup("cpu_map");
if (bpf_map_data->array[bpf_map_data->last].name == NULL) {
goto alloc_error;
}
bpf_map_data->last++;
}
fd = EBPFLoadPinnedMapsFile(livedev, "cpus_available");
if (fd >= 0) {
bpf_map_data->array[bpf_map_data->last].fd = fd;
bpf_map_data->array[bpf_map_data->last].name = SCStrdup("cpus_available");
if (bpf_map_data->array[bpf_map_data->last].name == NULL) {
goto alloc_error;
}
bpf_map_data->last++;
}
fd = EBPFLoadPinnedMapsFile(livedev, "tx_peer");
if (fd >= 0) {
bpf_map_data->array[bpf_map_data->last].fd = fd;
bpf_map_data->array[bpf_map_data->last].name = SCStrdup("tx_peer");
if (bpf_map_data->array[bpf_map_data->last].name == NULL) {
goto alloc_error;
}
bpf_map_data->last++;
}
fd = EBPFLoadPinnedMapsFile(livedev, "tx_peer_int");
if (fd >= 0) {
bpf_map_data->array[bpf_map_data->last].fd = fd;
bpf_map_data->array[bpf_map_data->last].name = SCStrdup("tx_peer_int");
if (bpf_map_data->array[bpf_map_data->last].name == NULL) {
goto alloc_error;
}
bpf_map_data->last++;
}
/* Attach the bpf_maps_info to the LiveDevice via the device storage */
LiveDevSetStorageById(livedev, g_livedev_storage_id, bpf_map_data);
/* Declare that device will use bypass stats */
LiveDevUseBypass(livedev);
return 0;
alloc_error:
for (int i = 0; i < bpf_map_data->last; i++) {
SCFree(bpf_map_data->array[i].name);
}
bpf_map_data->last = 0;
SCLogError(SC_ERR_MEM_ALLOC, "Can't allocate bpf map name");
return -1;
}
/**
* Load a section of an eBPF file
*
* This function loads a section inside an eBPF and return
* via the parameter val the file descriptor that will be used to
* inject the eBPF code into the kernel via a syscall.
*
* \param path the path of the eBPF file to load
* \param section the section in the eBPF file to load
* \param val a pointer to an integer that will be the file desc
* \return -1 in case of error, 0 in case of success, 1 if pinned maps is loaded
*/
int EBPFLoadFile(const char *iface, const char *path, const char * section,
int *val, struct ebpf_timeout_config *config)
{
int err, pfd;
bool found = false;
struct bpf_object *bpfobj = NULL;
struct bpf_program *bpfprog = NULL;
struct bpf_map *map = NULL;
if (iface == NULL)
return -1;
LiveDevice *livedev = LiveGetDevice(iface);
if (livedev == NULL)
return -1;
if (config->flags & EBPF_XDP_CODE && config->flags & EBPF_PINNED_MAPS) {
/* We try to get our flow table maps and if we have them we can simply return */
if (EBPFLoadPinnedMaps(livedev, config) == 0) {
SCLogInfo("Loaded pinned maps, will use already loaded eBPF filter");
return 1;
}
}
if (! path) {
SCLogError(SC_ERR_INVALID_VALUE, "No file defined to load eBPF from");
return -1;
}
/* Sending the eBPF code to the kernel requires a large amount of
* locked memory so we set it to unlimited to avoid a ENOPERM error */
struct rlimit r = {RLIM_INFINITY, RLIM_INFINITY};
if (setrlimit(RLIMIT_MEMLOCK, &r) != 0) {
SCLogError(SC_ERR_MEM_ALLOC, "Unable to lock memory: %s (%d)",
strerror(errno), errno);
return -1;
}
/* Open the eBPF file and parse it */
bpfobj = bpf_object__open(path);
long error = libbpf_get_error(bpfobj);
if (error) {
char err_buf[128];
libbpf_strerror(error, err_buf,
sizeof(err_buf));
SCLogError(SC_ERR_INVALID_VALUE,
"Unable to load eBPF objects in '%s': %s",
path, err_buf);
return -1;
}
if (config->flags & EBPF_XDP_HW_MODE) {
unsigned int ifindex = if_nametoindex(iface);
bpf_object__for_each_program(bpfprog, bpfobj) {
bpf_program__set_ifindex(bpfprog, ifindex);
}
bpf_map__for_each(map, bpfobj) {
bpf_map__set_ifindex(map, ifindex);
}
}
/* Let's check that our section is here */
bpf_object__for_each_program(bpfprog, bpfobj) {
const char *title = bpf_program__title(bpfprog, 0);
if (!strcmp(title, section)) {
if (config->flags & EBPF_SOCKET_FILTER) {
bpf_program__set_socket_filter(bpfprog);
} else {
bpf_program__set_xdp(bpfprog);
}
found = true;
break;
}
}
if (found == false) {
SCLogError(SC_ERR_INVALID_VALUE,
"No section '%s' in '%s' file. Will not be able to use the file",
section,
path);
return -1;
}
err = bpf_object__load(bpfobj);
if (err < 0) {
if (err == -EPERM) {
SCLogError(SC_ERR_SYSCALL,
"Permission issue when loading eBPF object"
" (check libbpf error on stdout)");
} else {
char buf[129];
libbpf_strerror(err, buf, sizeof(buf));
SCLogError(SC_ERR_INVALID_VALUE,
"Unable to load eBPF object: %s (%d)",
buf,
err);
}
return -1;
}
/* Kernel and userspace are sharing data via map. Userspace access to the
* map via a file descriptor. So we need to store the map to fd info. For
* that we use bpf_maps_info:: */
struct bpf_maps_info *bpf_map_data = SCCalloc(1, sizeof(*bpf_map_data));
if (bpf_map_data == NULL) {
SCLogError(SC_ERR_MEM_ALLOC, "Can't allocate bpf map array");
return -1;
}
/* Store the maps in bpf_maps_info:: */
bpf_map__for_each(map, bpfobj) {
if (bpf_map_data->last == BPF_MAP_MAX_COUNT) {
SCLogError(SC_ERR_NOT_SUPPORTED, "Too many BPF maps in eBPF files");
break;
}
SCLogDebug("Got a map '%s' with fd '%d'", bpf_map__name(map), bpf_map__fd(map));
bpf_map_data->array[bpf_map_data->last].fd = bpf_map__fd(map);
bpf_map_data->array[bpf_map_data->last].name = SCStrdup(bpf_map__name(map));
snprintf(bpf_map_data->array[bpf_map_data->last].iface, IFNAMSIZ,
"%s", iface);
if (!bpf_map_data->array[bpf_map_data->last].name) {
SCLogError(SC_ERR_MEM_ALLOC, "Unable to duplicate map name");
BpfMapsInfoFree(bpf_map_data);
return -1;
}
bpf_map_data->array[bpf_map_data->last].to_unlink = 0;
if (config->flags & EBPF_PINNED_MAPS) {
SCLogConfig("Pinning: %d to %s", bpf_map_data->array[bpf_map_data->last].fd,
bpf_map_data->array[bpf_map_data->last].name);
char buf[1024];
snprintf(buf, sizeof(buf), "/sys/fs/bpf/suricata-%s-%s", iface,
bpf_map_data->array[bpf_map_data->last].name);
int ret = bpf_obj_pin(bpf_map_data->array[bpf_map_data->last].fd, buf);
if (ret != 0) {
SCLogWarning(SC_ERR_AFP_CREATE, "Can not pin: %s", strerror(errno));
}
/* Don't unlink pinned maps in XDP mode to avoid a state reset */
if (config->flags & EBPF_XDP_CODE) {
bpf_map_data->array[bpf_map_data->last].to_unlink = 0;
} else {
bpf_map_data->array[bpf_map_data->last].to_unlink = 1;
}
}
bpf_map_data->last++;
}
/* Attach the bpf_maps_info to the LiveDevice via the device storage */
LiveDevSetStorageById(livedev, g_livedev_storage_id, bpf_map_data);
LiveDevUseBypass(livedev);
/* Finally we get the file descriptor for our eBPF program. We will use
* the fd to attach the program to the socket (eBPF case) or to the device
* (XDP case). */
pfd = bpf_program__fd(bpfprog);
if (pfd == -1) {
SCLogError(SC_ERR_INVALID_VALUE,
"Unable to find %s section", section);
return -1;
}
SCLogInfo("Successfully loaded eBPF file '%s' on '%s'", path, iface);
*val = pfd;
return 0;
}
/**
* Attach a XDP program identified by its file descriptor to a device
*
* \param iface the name of interface
* \param fd the eBPF/XDP program file descriptor
* \param a flag to pass to attach function mostly used to set XDP mode
* \return -1 in case of error, 0 if success
*/
int EBPFSetupXDP(const char *iface, int fd, uint8_t flags)
{
#ifdef HAVE_PACKET_XDP
unsigned int ifindex = if_nametoindex(iface);
if (ifindex == 0) {
SCLogError(SC_ERR_INVALID_VALUE,
"Unknown interface '%s'", iface);
return -1;
}
int err = bpf_set_link_xdp_fd(ifindex, fd, flags);
if (err != 0) {
char buf[129];
libbpf_strerror(err, buf, sizeof(buf));
SCLogError(SC_ERR_INVALID_VALUE, "Unable to set XDP on '%s': %s (%d)",
iface, buf, err);
return -1;
}
#endif
return 0;
}
/**
* Create a Flow in the table for a Flowkey
*
* \return false (this create function never returns true)
*/
static bool EBPFCreateFlowForKey(struct flows_stats *flowstats, LiveDevice *dev, void *key,
size_t skey, FlowKey *flow_key, struct timespec *ctime,
uint64_t pkts_cnt, uint64_t bytes_cnt,
int mapfd, int cpus_count)
{
Flow *f = NULL;
uint32_t hash = FlowKeyGetHash(flow_key);
f = FlowGetFromFlowKey(flow_key, ctime, hash);
if (f == NULL)
return false;
/* set accounting, we can't know the direction, so let's just start to
* server then if we already have something in to server to client. We need
* these numbers as we will use it to see if we have new traffic coming
* on the flow */
FlowBypassInfo *fc = FlowGetStorageById(f, GetFlowBypassInfoID());
if (fc == NULL) {
fc = SCCalloc(sizeof(FlowBypassInfo), 1);
if (fc) {
FlowUpdateState(f, FLOW_STATE_CAPTURE_BYPASSED);
FlowSetStorageById(f, GetFlowBypassInfoID(), fc);
fc->BypassUpdate = EBPFBypassUpdate;
fc->BypassFree = EBPFBypassFree;
fc->todstpktcnt = pkts_cnt;
fc->todstbytecnt = bytes_cnt;
f->livedev = dev;
EBPFBypassData *eb = SCCalloc(1, sizeof(EBPFBypassData));
if (eb == NULL) {
SCFree(fc);
FLOWLOCK_UNLOCK(f);
return false;
}
void *mkey = SCCalloc(1, skey);
if (mkey == NULL) {
SCFree(fc);
SCFree(eb);
FLOWLOCK_UNLOCK(f);
return false;
}
memcpy(mkey, key, skey);
eb->key[0] = mkey;
eb->mapfd = mapfd;
eb->cpus_count = cpus_count;
fc->bypass_data = eb;
flowstats->count++;
} else {
FLOWLOCK_UNLOCK(f);
return false;
}
} else {
EBPFBypassData *eb = (EBPFBypassData *) fc->bypass_data;
if (eb == NULL) {
FLOWLOCK_UNLOCK(f);
return false;
}
/* if both keys are here, then it is a flow bypassed by this
* instance so we ignore it */
if (eb->key[0] && eb->key[1]) {
FLOWLOCK_UNLOCK(f);
return false;
}
fc->tosrcpktcnt = pkts_cnt;
fc->tosrcbytecnt = bytes_cnt;
void *mkey = SCCalloc(1, skey);
if (mkey == NULL) {
FLOWLOCK_UNLOCK(f);
return false;
}
memcpy(mkey, key, skey);
eb->key[1] = mkey;
}
f->livedev = dev;
FLOWLOCK_UNLOCK(f);
return false;
}
void EBPFBypassFree(void *data)
{
EBPFBypassData *eb = (EBPFBypassData *)data;
if (eb == NULL)
return;
SCFree(eb->key[0]);
if (eb->key[1]) {
SCFree(eb->key[1]);
}
SCFree(eb);
return;
}
/**
*
* Compare eBPF half flow to Flow
*
* \return true if entries have activity, false if not
*/
static bool EBPFBypassCheckHalfFlow(Flow *f, FlowBypassInfo *fc,
EBPFBypassData *eb, void *key,
int index)
{
int i;
uint64_t pkts_cnt = 0;
uint64_t bytes_cnt = 0;
/* We use a per CPU structure so we will get a array of values. But if nr_cpus
* is 1 then we have a global hash. */
BPF_DECLARE_PERCPU(struct pair, values_array, eb->cpus_count);
memset(values_array, 0, sizeof(values_array));
int res = bpf_map_lookup_elem(eb->mapfd, key, values_array);
if (res < 0) {
SCLogDebug("errno: (%d) %s", errno, strerror(errno));
return false;
}
for (i = 0; i < eb->cpus_count; i++) {
/* let's start accumulating value so we can compute the counters */
SCLogDebug("%d: Adding pkts %lu bytes %lu", i,
BPF_PERCPU(values_array, i).packets,
BPF_PERCPU(values_array, i).bytes);
pkts_cnt += BPF_PERCPU(values_array, i).packets;
bytes_cnt += BPF_PERCPU(values_array, i).bytes;
}
if (index == 0) {
if (pkts_cnt != fc->todstpktcnt) {
fc->todstpktcnt = pkts_cnt;
fc->todstbytecnt = bytes_cnt;
return true;
}
} else {
if (pkts_cnt != fc->tosrcpktcnt) {
fc->tosrcpktcnt = pkts_cnt;
fc->tosrcbytecnt = bytes_cnt;
return true;
}
}
return false;
}
/** Check both half flows for update
*
* Update lastts in the flow and do accounting
*
* */
bool EBPFBypassUpdate(Flow *f, void *data, time_t tsec)
{
EBPFBypassData *eb = (EBPFBypassData *)data;
if (eb == NULL) {
return false;
}
FlowBypassInfo *fc = FlowGetStorageById(f, GetFlowBypassInfoID());
if (fc == NULL) {
return false;
}
bool activity = EBPFBypassCheckHalfFlow(f, fc, eb, eb->key[0], 0);
activity |= EBPFBypassCheckHalfFlow(f, fc, eb, eb->key[1], 1);
if (!activity) {
SCLogDebug("Delete entry: %u (%ld)", FLOW_IS_IPV6(f), FlowGetId(f));
/* delete the entries if no time update */
EBPFDeleteKey(eb->mapfd, eb->key[0]);
EBPFDeleteKey(eb->mapfd, eb->key[1]);
SCLogDebug("Done delete entry: %u", FLOW_IS_IPV6(f));
} else {
f->lastts.tv_sec = tsec;
return true;
}
return false;
}
typedef bool (*OpFlowForKey)(struct flows_stats * flowstats, LiveDevice*dev, void *key,
size_t skey, FlowKey *flow_key, struct timespec *ctime,
uint64_t pkts_cnt, uint64_t bytes_cnt,
int mapfd, int cpus_count);
/**
* Bypassed flows cleaning for IPv4
*
* This function iterates on all the flows of the IPv4 table
* looking for timeouted flow to delete from the flow table.
*/
static int EBPFForEachFlowV4Table(ThreadVars *th_v, LiveDevice *dev, const char *name,
struct timespec *ctime,
struct ebpf_timeout_config *tcfg,
OpFlowForKey EBPFOpFlowForKey
)
{
struct flows_stats flowstats = { 0, 0, 0};
int mapfd = EBPFGetMapFDByName(dev->dev, name);
if (mapfd == -1)
return -1;
struct flowv4_keys key = {}, next_key;
int found = 0;
unsigned int i;
uint64_t hash_cnt = 0;
if (tcfg->cpus_count == 0) {
return 0;
}
bool dead_flow = false;
while (bpf_map_get_next_key(mapfd, &key, &next_key) == 0) {
uint64_t bytes_cnt = 0;
uint64_t pkts_cnt = 0;
hash_cnt++;
if (dead_flow) {
EBPFDeleteKey(mapfd, &key);
dead_flow = false;
}
/* We use a per CPU structure so we will get a array of values. But if nr_cpus
* is 1 then we have a global hash. */
BPF_DECLARE_PERCPU(struct pair, values_array, tcfg->cpus_count);
memset(values_array, 0, sizeof(values_array));
int res = bpf_map_lookup_elem(mapfd, &next_key, values_array);
if (res < 0) {
SCLogDebug("no entry in v4 table for %d -> %d", key.port16[0], key.port16[1]);
SCLogDebug("errno: (%d) %s", errno, strerror(errno));
key = next_key;
continue;
}
for (i = 0; i < tcfg->cpus_count; i++) {
/* let's start accumulating value so we can compute the counters */
SCLogDebug("%d: Adding pkts %lu bytes %lu", i,
BPF_PERCPU(values_array, i).packets,
BPF_PERCPU(values_array, i).bytes);
pkts_cnt += BPF_PERCPU(values_array, i).packets;
bytes_cnt += BPF_PERCPU(values_array, i).bytes;
}
/* Get the corresponding Flow in the Flow table to compare and update
* its counters and lastseen if needed */
FlowKey flow_key;
if (tcfg->mode == AFP_MODE_XDP_BYPASS) {
flow_key.sp = ntohs(next_key.port16[0]);
flow_key.dp = ntohs(next_key.port16[1]);
flow_key.src.addr_data32[0] = next_key.src;
flow_key.dst.addr_data32[0] = next_key.dst;
} else {
flow_key.sp = next_key.port16[0];
flow_key.dp = next_key.port16[1];
flow_key.src.addr_data32[0] = ntohl(next_key.src);
flow_key.dst.addr_data32[0] = ntohl(next_key.dst);
}
flow_key.src.family = AF_INET;
flow_key.src.addr_data32[1] = 0;
flow_key.src.addr_data32[2] = 0;
flow_key.src.addr_data32[3] = 0;
flow_key.dst.family = AF_INET;
flow_key.dst.addr_data32[1] = 0;
flow_key.dst.addr_data32[2] = 0;
flow_key.dst.addr_data32[3] = 0;
flow_key.vlan_id[0] = next_key.vlan0;
flow_key.vlan_id[1] = next_key.vlan1;
if (next_key.ip_proto == 1) {
flow_key.proto = IPPROTO_TCP;
} else {
flow_key.proto = IPPROTO_UDP;
}
flow_key.recursion_level = 0;
dead_flow = EBPFOpFlowForKey(&flowstats, dev, &next_key, sizeof(next_key), &flow_key,
ctime, pkts_cnt, bytes_cnt,
mapfd, tcfg->cpus_count);
if (dead_flow) {
found = 1;
}
if (TmThreadsCheckFlag(th_v, THV_KILL)) {
return 0;
}
key = next_key;
}
if (dead_flow) {
EBPFDeleteKey(mapfd, &key);
found = 1;
}
SC_ATOMIC_ADD(dev->bypassed, flowstats.packets);
LiveDevAddBypassStats(dev, flowstats.count, AF_INET);
SCLogInfo("IPv4 bypassed flow table size: %" PRIu64, hash_cnt);
return found;
}
/**
* Bypassed flows cleaning for IPv6
*
* This function iterates on all the flows of the IPv4 table
* looking for timeouted flow to delete from the flow table.
*/
static int EBPFForEachFlowV6Table(ThreadVars *th_v,
LiveDevice *dev, const char *name,
struct timespec *ctime,
struct ebpf_timeout_config *tcfg,
OpFlowForKey EBPFOpFlowForKey
)
{
struct flows_stats flowstats = { 0, 0, 0};
int mapfd = EBPFGetMapFDByName(dev->dev, name);
if (mapfd == -1)
return -1;
struct flowv6_keys key = {}, next_key;
int found = 0;
unsigned int i;
uint64_t hash_cnt = 0;
if (tcfg->cpus_count == 0) {
SCLogWarning(SC_ERR_INVALID_VALUE, "CPU count should not be 0");
return 0;
}
uint64_t pkts_cnt = 0;
while (bpf_map_get_next_key(mapfd, &key, &next_key) == 0) {
uint64_t bytes_cnt = 0;
hash_cnt++;
if (pkts_cnt > 0) {
EBPFDeleteKey(mapfd, &key);
}
pkts_cnt = 0;
/* We use a per CPU structure so we will get a array of values. But if nr_cpus
* is 1 then we have a global hash. */
BPF_DECLARE_PERCPU(struct pair, values_array, tcfg->cpus_count);
memset(values_array, 0, sizeof(values_array));
int res = bpf_map_lookup_elem(mapfd, &next_key, values_array);
if (res < 0) {
SCLogDebug("no entry in v4 table for %d -> %d", key.port16[0], key.port16[1]);
key = next_key;
continue;
}
for (i = 0; i < tcfg->cpus_count; i++) {
/* let's start accumulating value so we can compute the counters */
SCLogDebug("%d: Adding pkts %lu bytes %lu", i,
BPF_PERCPU(values_array, i).packets,
BPF_PERCPU(values_array, i).bytes);
pkts_cnt += BPF_PERCPU(values_array, i).packets;
bytes_cnt += BPF_PERCPU(values_array, i).bytes;
}
/* Get the corresponding Flow in the Flow table to compare and update
* its counters and lastseen if needed */
FlowKey flow_key;
if (tcfg->mode == AFP_MODE_XDP_BYPASS) {
flow_key.sp = ntohs(next_key.port16[0]);
flow_key.dp = ntohs(next_key.port16[1]);
flow_key.src.family = AF_INET6;
flow_key.src.addr_data32[0] = next_key.src[0];
flow_key.src.addr_data32[1] = next_key.src[1];
flow_key.src.addr_data32[2] = next_key.src[2];
flow_key.src.addr_data32[3] = next_key.src[3];
flow_key.dst.family = AF_INET6;
flow_key.dst.addr_data32[0] = next_key.dst[0];
flow_key.dst.addr_data32[1] = next_key.dst[1];
flow_key.dst.addr_data32[2] = next_key.dst[2];
flow_key.dst.addr_data32[3] = next_key.dst[3];
} else {
flow_key.sp = next_key.port16[0];
flow_key.dp = next_key.port16[1];
flow_key.src.family = AF_INET6;
flow_key.src.addr_data32[0] = ntohl(next_key.src[0]);
flow_key.src.addr_data32[1] = ntohl(next_key.src[1]);
flow_key.src.addr_data32[2] = ntohl(next_key.src[2]);
flow_key.src.addr_data32[3] = ntohl(next_key.src[3]);
flow_key.dst.family = AF_INET6;
flow_key.dst.addr_data32[0] = ntohl(next_key.dst[0]);
flow_key.dst.addr_data32[1] = ntohl(next_key.dst[1]);
flow_key.dst.addr_data32[2] = ntohl(next_key.dst[2]);
flow_key.dst.addr_data32[3] = ntohl(next_key.dst[3]);
}
flow_key.vlan_id[0] = next_key.vlan0;
flow_key.vlan_id[1] = next_key.vlan1;
if (next_key.ip_proto == 1) {
flow_key.proto = IPPROTO_TCP;
} else {
flow_key.proto = IPPROTO_UDP;
}
flow_key.recursion_level = 0;
pkts_cnt = EBPFOpFlowForKey(&flowstats, dev, &next_key, sizeof(next_key), &flow_key,
ctime, pkts_cnt, bytes_cnt,
mapfd, tcfg->cpus_count);
if (pkts_cnt > 0) {
found = 1;
}
if (TmThreadsCheckFlag(th_v, THV_KILL)) {
return 0;
}
key = next_key;
}
if (pkts_cnt > 0) {
EBPFDeleteKey(mapfd, &key);
found = 1;
}
SC_ATOMIC_ADD(dev->bypassed, flowstats.packets);
LiveDevAddBypassStats(dev, flowstats.count, AF_INET6);
SCLogInfo("IPv6 bypassed flow table size: %" PRIu64, hash_cnt);
return found;
}
int EBPFCheckBypassedFlowCreate(ThreadVars *th_v, struct timespec *curtime, void *data)
{
LiveDevice *ldev = NULL, *ndev;
struct ebpf_timeout_config *cfg = (struct ebpf_timeout_config *)data;
while(LiveDeviceForEach(&ldev, &ndev)) {
EBPFForEachFlowV4Table(th_v, ldev, "flow_table_v4",
curtime,
cfg, EBPFCreateFlowForKey);
EBPFForEachFlowV6Table(th_v, ldev, "flow_table_v6",
curtime,
cfg, EBPFCreateFlowForKey);
}
return 0;
}
void EBPFRegisterExtension(void)
{
g_livedev_storage_id = LiveDevStorageRegister("bpfmap", sizeof(void *), NULL, BpfMapsInfoFree);
g_flow_storage_id = FlowStorageRegister("bypassedlist", sizeof(void *), NULL, BypassedListFree);
}
#ifdef HAVE_PACKET_XDP
static uint32_t g_redirect_iface_cpu_counter = 0;
static int EBPFAddCPUToMap(const char *iface, uint32_t i)
{
int cpumap = EBPFGetMapFDByName(iface, "cpu_map");
uint32_t queue_size = 4096;
int ret;
if (cpumap < 0) {
SCLogError(SC_ERR_AFP_CREATE, "Can't find cpu_map");
return -1;
}
ret = bpf_map_update_elem(cpumap, &i, &queue_size, 0);
if (ret) {
SCLogError(SC_ERR_AFP_CREATE, "Create CPU entry failed (err:%d)", ret);
return -1;
}
int cpus_available = EBPFGetMapFDByName(iface, "cpus_available");
if (cpus_available < 0) {
SCLogError(SC_ERR_AFP_CREATE, "Can't find cpus_available map");
return -1;
}
ret = bpf_map_update_elem(cpus_available, &g_redirect_iface_cpu_counter, &i, 0);
if (ret) {
SCLogError(SC_ERR_AFP_CREATE, "Create CPU entry failed (err:%d)", ret);
return -1;
}
return 0;
}
static void EBPFRedirectMapAddCPU(int i, void *data)
{
if (EBPFAddCPUToMap(data, i) < 0) {
SCLogError(SC_ERR_INVALID_VALUE,
"Unable to add CPU %d to set", i);
} else {
g_redirect_iface_cpu_counter++;
}
}
void EBPFBuildCPUSet(ConfNode *node, char *iface)
{
uint32_t key0 = 0;
int mapfd = EBPFGetMapFDByName(iface, "cpus_count");
if (mapfd < 0) {
SCLogError(SC_ERR_INVALID_VALUE,
"Unable to find 'cpus_count' map");
return;
}
g_redirect_iface_cpu_counter = 0;
if (node == NULL) {
bpf_map_update_elem(mapfd, &key0, &g_redirect_iface_cpu_counter,
BPF_ANY);
return;
}
BuildCpusetWithCallback("xdp-cpu-redirect", node,
EBPFRedirectMapAddCPU,
iface);
bpf_map_update_elem(mapfd, &key0, &g_redirect_iface_cpu_counter,
BPF_ANY);
}
/**
* Setup peer interface in XDP system
*
* Ths function set up the peer interface in the XDP maps used by the
* bypass filter. The first map tx_peer has type device map and is
* used to store the peer. The second map tx_peer_int is used by the
* code to check if we have a peer defined for this interface.
*
* As the map are per device we just need maps with one single element.
* In both case, we use the key 0 to enter element so XDP kernel code
* is using the same key.
*/
int EBPFSetPeerIface(const char *iface, const char *out_iface)
{
int mapfd = EBPFGetMapFDByName(iface, "tx_peer");
if (mapfd < 0) {
SCLogError(SC_ERR_INVALID_VALUE,
"Unable to find 'tx_peer' map");
return -1;
}
int intmapfd = EBPFGetMapFDByName(iface, "tx_peer_int");
if (intmapfd < 0) {
SCLogError(SC_ERR_INVALID_VALUE,
"Unable to find 'tx_peer_int' map");
return -1;
}
int key0 = 0;
unsigned int peer_index = if_nametoindex(out_iface);
if (peer_index == 0) {
SCLogError(SC_ERR_INVALID_VALUE, "No iface '%s'", out_iface);
return -1;
}
int ret = bpf_map_update_elem(mapfd, &key0, &peer_index, BPF_ANY);
if (ret) {
SCLogError(SC_ERR_AFP_CREATE, "Create peer entry failed (err:%d)", ret);
return -1;
}
ret = bpf_map_update_elem(intmapfd, &key0, &peer_index, BPF_ANY);
if (ret) {
SCLogError(SC_ERR_AFP_CREATE, "Create peer entry failed (err:%d)", ret);
return -1;
}
return 0;
}
/**
* Bypass the flow on all ifaces it is seen on. This is used
* in IPS mode.
*/
int EBPFUpdateFlow(Flow *f, Packet *p, void *data)
{
BypassedIfaceList *ifl = (BypassedIfaceList *)FlowGetStorageById(f, g_flow_storage_id);
if (ifl == NULL) {
ifl = SCCalloc(1, sizeof(*ifl));
if (ifl == NULL) {
return 0;
}
ifl->dev = p->livedev;
FlowSetStorageById(f, g_flow_storage_id, ifl);
return 1;
}
/* Look for packet iface in the list */
BypassedIfaceList *ldev = ifl;
while (ldev) {
if (p->livedev == ldev->dev) {
return 1;
}
ldev = ldev->next;
}
/* Call bypass function if ever not in the list */
p->BypassPacketsFlow(p);
/* Add iface to the list */
BypassedIfaceList *nifl = SCCalloc(1, sizeof(*nifl));
if (nifl == NULL) {
return 0;
}
nifl->dev = p->livedev;
nifl->next = ifl;
FlowSetStorageById(f, g_flow_storage_id, nifl);
return 1;
}
#endif /* HAVE_PACKET_XDP */
#endif