You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
suricata/src/decode.c

726 lines
22 KiB
C

/* Copyright (C) 2007-2019 Open Information Security Foundation
*
* You can copy, redistribute or modify this Program under the terms of
* the GNU General Public License version 2 as published by the Free
* Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* version 2 along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA.
*/
/**
* \defgroup decode Packet decoding
*
* \brief Code in charge of protocol decoding
*
* The task of decoding packets is made in different files and
* as Suricata is supporting encapsulation there is a potential
* recursivity in the call.
*
* For each protocol a DecodePROTO function is provided. For
* example we have DecodeIPV4() for IPv4 and DecodePPP() for
* PPP.
*
* These functions have all a pkt and and a len argument which
* are respectively a pointer to the protocol data and the length
* of this protocol data.
*
* \attention The pkt parameter must point to the effective data because
* it will be used later to set per protocol pointer like Packet::tcph
*
* @{
*/
/**
* \file
*
* \author Victor Julien <victor@inliniac.net>
*
* Decode the raw packet
*/
#include "suricata-common.h"
#include "suricata.h"
#include "conf.h"
#include "decode.h"
#include "decode-teredo.h"
#include "util-debug.h"
#include "util-mem.h"
#include "app-layer-detect-proto.h"
#include "app-layer.h"
#include "tm-threads.h"
#include "util-error.h"
#include "util-print.h"
#include "tmqh-packetpool.h"
#include "util-profiling.h"
#include "pkt-var.h"
#include "util-mpm-ac.h"
#include "util-hash-string.h"
#include "output.h"
#include "output-flow.h"
#include "flow-storage.h"
extern bool stats_decoder_events;
const char *stats_decoder_events_prefix;
extern bool stats_stream_events;
int DecodeTunnel(ThreadVars *tv, DecodeThreadVars *dtv, Packet *p,
uint8_t *pkt, uint32_t len, PacketQueue *pq, enum DecodeTunnelProto proto)
{
switch (proto) {
case DECODE_TUNNEL_PPP:
return DecodePPP(tv, dtv, p, pkt, len, pq);
case DECODE_TUNNEL_IPV4:
return DecodeIPV4(tv, dtv, p, pkt, len, pq);
case DECODE_TUNNEL_IPV6:
case DECODE_TUNNEL_IPV6_TEREDO:
return DecodeIPV6(tv, dtv, p, pkt, len, pq);
case DECODE_TUNNEL_VLAN:
return DecodeVLAN(tv, dtv, p, pkt, len, pq);
case DECODE_TUNNEL_ETHERNET:
return DecodeEthernet(tv, dtv, p, pkt, len, pq);
case DECODE_TUNNEL_ERSPAN:
return DecodeERSPAN(tv, dtv, p, pkt, len, pq);
default:
SCLogDebug("FIXME: DecodeTunnel: protocol %" PRIu32 " not supported.", proto);
break;
}
return TM_ECODE_OK;
}
/**
* \brief Return a malloced packet.
*/
void PacketFree(Packet *p)
{
PACKET_DESTRUCTOR(p);
SCFree(p);
}
/**
* \brief Finalize decoding of a packet
*
* This function needs to be call at the end of decode
* functions when decoding has been succesful.
*
*/
void PacketDecodeFinalize(ThreadVars *tv, DecodeThreadVars *dtv, Packet *p)
{
if (p->flags & PKT_IS_INVALID) {
StatsIncr(tv, dtv->counter_invalid);
}
}
void PacketUpdateEngineEventCounters(ThreadVars *tv,
DecodeThreadVars *dtv, Packet *p)
{
for (uint8_t i = 0; i < p->events.cnt; i++) {
const uint8_t e = p->events.events[i];
if (e <= DECODE_EVENT_PACKET_MAX && !stats_decoder_events)
continue;
else if (e > DECODE_EVENT_PACKET_MAX && !stats_stream_events)
continue;
StatsIncr(tv, dtv->counter_engine_events[e]);
}
}
/**
* \brief Get a malloced packet.
*
* \retval p packet, NULL on error
*/
Packet *PacketGetFromAlloc(void)
{
Packet *p = SCMalloc(SIZE_OF_PACKET);
if (unlikely(p == NULL)) {
return NULL;
}
memset(p, 0, SIZE_OF_PACKET);
PACKET_INITIALIZE(p);
p->ReleasePacket = PacketFree;
p->flags |= PKT_ALLOC;
SCLogDebug("allocated a new packet only using alloc...");
PACKET_PROFILING_START(p);
return p;
}
/**
* \brief Return a packet to where it was allocated.
*/
void PacketFreeOrRelease(Packet *p)
{
if (p->flags & PKT_ALLOC)
PacketFree(p);
else
PacketPoolReturnPacket(p);
}
/**
* \brief Get a packet. We try to get a packet from the packetpool first, but
* if that is empty we alloc a packet that is free'd again after
* processing.
*
* \retval p packet, NULL on error
*/
Packet *PacketGetFromQueueOrAlloc(void)
{
/* try the pool first */
Packet *p = PacketPoolGetPacket();
if (p == NULL) {
/* non fatal, we're just not processing a packet then */
p = PacketGetFromAlloc();
} else {
PACKET_PROFILING_START(p);
}
return p;
}
inline int PacketCallocExtPkt(Packet *p, int datalen)
{
if (! p->ext_pkt) {
p->ext_pkt = SCCalloc(1, datalen);
if (unlikely(p->ext_pkt == NULL)) {
SET_PKT_LEN(p, 0);
return -1;
}
}
return 0;
}
/**
* \brief Copy data to Packet payload at given offset
*
* This function copies data/payload to a Packet. It uses the
* space allocated at Packet creation (pointed by Packet::pkt)
* or allocate some memory (pointed by Packet::ext_pkt) if the
* data size is to big to fit in initial space (of size
* default_packet_size).
*
* \param Pointer to the Packet to modify
* \param Offset of the copy relatively to payload of Packet
* \param Pointer to the data to copy
* \param Length of the data to copy
*/
inline int PacketCopyDataOffset(Packet *p, uint32_t offset, uint8_t *data, uint32_t datalen)
{
if (unlikely(offset + datalen > MAX_PAYLOAD_SIZE)) {
/* too big */
return -1;
}
/* Do we have already an packet with allocated data */
if (! p->ext_pkt) {
uint32_t newsize = offset + datalen;
// check overflow
if (newsize < offset)
return -1;
if (newsize <= default_packet_size) {
/* data will fit in memory allocated with packet */
memcpy(GET_PKT_DIRECT_DATA(p) + offset, data, datalen);
} else {
/* here we need a dynamic allocation */
p->ext_pkt = SCMalloc(MAX_PAYLOAD_SIZE);
if (unlikely(p->ext_pkt == NULL)) {
SET_PKT_LEN(p, 0);
return -1;
}
/* copy initial data */
memcpy(p->ext_pkt, GET_PKT_DIRECT_DATA(p), GET_PKT_DIRECT_MAX_SIZE(p));
/* copy data as asked */
memcpy(p->ext_pkt + offset, data, datalen);
}
} else {
memcpy(p->ext_pkt + offset, data, datalen);
}
return 0;
}
/**
* \brief Copy data to Packet payload and set packet length
*
* \param Pointer to the Packet to modify
* \param Pointer to the data to copy
* \param Length of the data to copy
*/
inline int PacketCopyData(Packet *p, uint8_t *pktdata, uint32_t pktlen)
{
SET_PKT_LEN(p, (size_t)pktlen);
return PacketCopyDataOffset(p, 0, pktdata, pktlen);
}
/**
* \brief Setup a pseudo packet (tunnel)
*
* \param parent parent packet for this pseudo pkt
* \param pkt raw packet data
* \param len packet data length
* \param proto protocol of the tunneled packet
*
* \retval p the pseudo packet or NULL if out of memory
*/
Packet *PacketTunnelPktSetup(ThreadVars *tv, DecodeThreadVars *dtv, Packet *parent,
uint8_t *pkt, uint32_t len, enum DecodeTunnelProto proto,
PacketQueue *pq)
{
int ret;
SCEnter();
/* get us a packet */
Packet *p = PacketGetFromQueueOrAlloc();
if (unlikely(p == NULL)) {
SCReturnPtr(NULL, "Packet");
}
/* copy packet and set lenght, proto */
PacketCopyData(p, pkt, len);
p->recursion_level = parent->recursion_level + 1;
p->ts.tv_sec = parent->ts.tv_sec;
p->ts.tv_usec = parent->ts.tv_usec;
p->datalink = DLT_RAW;
p->tenant_id = parent->tenant_id;
/* set the root ptr to the lowest layer */
if (parent->root != NULL)
p->root = parent->root;
else
p->root = parent;
/* tell new packet it's part of a tunnel */
SET_TUNNEL_PKT(p);
ret = DecodeTunnel(tv, dtv, p, GET_PKT_DATA(p),
GET_PKT_LEN(p), pq, proto);
if (unlikely(ret != TM_ECODE_OK) ||
(proto == DECODE_TUNNEL_IPV6_TEREDO && (p->flags & PKT_IS_INVALID)))
{
/* Not a (valid) tunnel packet */
SCLogDebug("tunnel packet is invalid");
p->root = NULL;
UNSET_TUNNEL_PKT(p);
TmqhOutputPacketpool(tv, p);
SCReturnPtr(NULL, "Packet");
}
/* tell parent packet it's part of a tunnel */
SET_TUNNEL_PKT(parent);
/* increment tunnel packet refcnt in the root packet */
TUNNEL_INCR_PKT_TPR(p);
/* disable payload (not packet) inspection on the parent, as the payload
* is the packet we will now run through the system separately. We do
* check it against the ip/port/other header checks though */
DecodeSetNoPayloadInspectionFlag(parent);
SCReturnPtr(p, "Packet");
}
/**
* \brief Setup a pseudo packet (reassembled frags)
*
* Difference with PacketPseudoPktSetup is that this func doesn't increment
* the recursion level. It needs to be on the same level as the frags because
* we run the flow engine against this and we need to get the same flow.
*
* \param parent parent packet for this pseudo pkt
* \param pkt raw packet data
* \param len packet data length
* \param proto protocol of the tunneled packet
*
* \retval p the pseudo packet or NULL if out of memory
*/
Packet *PacketDefragPktSetup(Packet *parent, uint8_t *pkt, uint32_t len, uint8_t proto)
{
SCEnter();
/* get us a packet */
Packet *p = PacketGetFromQueueOrAlloc();
if (unlikely(p == NULL)) {
SCReturnPtr(NULL, "Packet");
}
/* set the root ptr to the lowest layer */
if (parent->root != NULL)
p->root = parent->root;
else
p->root = parent;
/* copy packet and set lenght, proto */
if (pkt && len) {
PacketCopyData(p, pkt, len);
}
p->recursion_level = parent->recursion_level; /* NOT incremented */
p->ts.tv_sec = parent->ts.tv_sec;
p->ts.tv_usec = parent->ts.tv_usec;
p->datalink = DLT_RAW;
p->tenant_id = parent->tenant_id;
/* tell new packet it's part of a tunnel */
SET_TUNNEL_PKT(p);
p->vlan_id[0] = parent->vlan_id[0];
p->vlan_id[1] = parent->vlan_id[1];
p->vlan_idx = parent->vlan_idx;
SCReturnPtr(p, "Packet");
}
/**
* \brief inform defrag "parent" that a pseudo packet is
* now assosiated to it.
*/
void PacketDefragPktSetupParent(Packet *parent)
{
/* tell parent packet it's part of a tunnel */
SET_TUNNEL_PKT(parent);
/* increment tunnel packet refcnt in the root packet */
TUNNEL_INCR_PKT_TPR(parent);
/* disable payload (not packet) inspection on the parent, as the payload
* is the packet we will now run through the system separately. We do
* check it against the ip/port/other header checks though */
DecodeSetNoPayloadInspectionFlag(parent);
}
void PacketBypassCallback(Packet *p)
{
/* Don't try to bypass if flow is already out or
* if we have failed to do it once */
if (p->flow) {
int state = SC_ATOMIC_GET(p->flow->flow_state);
if ((state == FLOW_STATE_LOCAL_BYPASSED) ||
(state == FLOW_STATE_CAPTURE_BYPASSED)) {
return;
}
FlowBypassInfo *fc = SCCalloc(sizeof(FlowBypassInfo), 1);
if (fc) {
FlowSetStorageById(p->flow, GetFlowBypassInfoID(), fc);
} else {
return;
}
}
if (p->BypassPacketsFlow && p->BypassPacketsFlow(p)) {
if (p->flow) {
FlowUpdateState(p->flow, FLOW_STATE_CAPTURE_BYPASSED);
}
} else {
if (p->flow) {
FlowUpdateState(p->flow, FLOW_STATE_LOCAL_BYPASSED);
}
}
}
/** \brief switch direction of a packet */
void PacketSwap(Packet *p)
{
if (PKT_IS_TOSERVER(p)) {
p->flowflags &= ~FLOW_PKT_TOSERVER;
p->flowflags |= FLOW_PKT_TOCLIENT;
if (p->flowflags & FLOW_PKT_TOSERVER_FIRST) {
p->flowflags &= ~FLOW_PKT_TOSERVER_FIRST;
p->flowflags |= FLOW_PKT_TOCLIENT_FIRST;
}
} else {
p->flowflags &= ~FLOW_PKT_TOCLIENT;
p->flowflags |= FLOW_PKT_TOSERVER;
if (p->flowflags & FLOW_PKT_TOCLIENT_FIRST) {
p->flowflags &= ~FLOW_PKT_TOCLIENT_FIRST;
p->flowflags |= FLOW_PKT_TOSERVER_FIRST;
}
}
}
/* counter name store */
static HashTable *g_counter_table = NULL;
static SCMutex g_counter_table_mutex = SCMUTEX_INITIALIZER;
void DecodeUnregisterCounters(void)
{
SCMutexLock(&g_counter_table_mutex);
if (g_counter_table) {
HashTableFree(g_counter_table);
g_counter_table = NULL;
}
SCMutexUnlock(&g_counter_table_mutex);
}
void DecodeRegisterPerfCounters(DecodeThreadVars *dtv, ThreadVars *tv)
{
/* register counters */
dtv->counter_pkts = StatsRegisterCounter("decoder.pkts", tv);
dtv->counter_bytes = StatsRegisterCounter("decoder.bytes", tv);
dtv->counter_invalid = StatsRegisterCounter("decoder.invalid", tv);
dtv->counter_ipv4 = StatsRegisterCounter("decoder.ipv4", tv);
dtv->counter_ipv6 = StatsRegisterCounter("decoder.ipv6", tv);
dtv->counter_eth = StatsRegisterCounter("decoder.ethernet", tv);
dtv->counter_raw = StatsRegisterCounter("decoder.raw", tv);
dtv->counter_null = StatsRegisterCounter("decoder.null", tv);
dtv->counter_sll = StatsRegisterCounter("decoder.sll", tv);
dtv->counter_tcp = StatsRegisterCounter("decoder.tcp", tv);
dtv->counter_udp = StatsRegisterCounter("decoder.udp", tv);
dtv->counter_sctp = StatsRegisterCounter("decoder.sctp", tv);
dtv->counter_icmpv4 = StatsRegisterCounter("decoder.icmpv4", tv);
dtv->counter_icmpv6 = StatsRegisterCounter("decoder.icmpv6", tv);
dtv->counter_ppp = StatsRegisterCounter("decoder.ppp", tv);
dtv->counter_pppoe = StatsRegisterCounter("decoder.pppoe", tv);
dtv->counter_gre = StatsRegisterCounter("decoder.gre", tv);
dtv->counter_vlan = StatsRegisterCounter("decoder.vlan", tv);
dtv->counter_vlan_qinq = StatsRegisterCounter("decoder.vlan_qinq", tv);
dtv->counter_ieee8021ah = StatsRegisterCounter("decoder.ieee8021ah", tv);
dtv->counter_teredo = StatsRegisterCounter("decoder.teredo", tv);
dtv->counter_ipv4inipv6 = StatsRegisterCounter("decoder.ipv4_in_ipv6", tv);
dtv->counter_ipv6inipv6 = StatsRegisterCounter("decoder.ipv6_in_ipv6", tv);
dtv->counter_mpls = StatsRegisterCounter("decoder.mpls", tv);
dtv->counter_avg_pkt_size = StatsRegisterAvgCounter("decoder.avg_pkt_size", tv);
dtv->counter_max_pkt_size = StatsRegisterMaxCounter("decoder.max_pkt_size", tv);
dtv->counter_erspan = StatsRegisterMaxCounter("decoder.erspan", tv);
dtv->counter_flow_memcap = StatsRegisterCounter("flow.memcap", tv);
dtv->counter_flow_tcp = StatsRegisterCounter("flow.tcp", tv);
dtv->counter_flow_udp = StatsRegisterCounter("flow.udp", tv);
dtv->counter_flow_icmp4 = StatsRegisterCounter("flow.icmpv4", tv);
dtv->counter_flow_icmp6 = StatsRegisterCounter("flow.icmpv6", tv);
dtv->counter_defrag_ipv4_fragments =
StatsRegisterCounter("defrag.ipv4.fragments", tv);
dtv->counter_defrag_ipv4_reassembled =
StatsRegisterCounter("defrag.ipv4.reassembled", tv);
dtv->counter_defrag_ipv4_timeouts =
StatsRegisterCounter("defrag.ipv4.timeouts", tv);
dtv->counter_defrag_ipv6_fragments =
StatsRegisterCounter("defrag.ipv6.fragments", tv);
dtv->counter_defrag_ipv6_reassembled =
StatsRegisterCounter("defrag.ipv6.reassembled", tv);
dtv->counter_defrag_ipv6_timeouts =
StatsRegisterCounter("defrag.ipv6.timeouts", tv);
dtv->counter_defrag_max_hit =
StatsRegisterCounter("defrag.max_frag_hits", tv);
for (int i = 0; i < DECODE_EVENT_MAX; i++) {
BUG_ON(i != (int)DEvents[i].code);
if (i <= DECODE_EVENT_PACKET_MAX && !stats_decoder_events)
continue;
else if (i > DECODE_EVENT_PACKET_MAX && !stats_stream_events)
continue;
if (i < DECODE_EVENT_PACKET_MAX &&
strncmp(DEvents[i].event_name, "decoder.", 8) == 0)
{
SCMutexLock(&g_counter_table_mutex);
if (g_counter_table == NULL) {
g_counter_table = HashTableInit(256, StringHashFunc,
StringHashCompareFunc,
StringHashFreeFunc);
if (g_counter_table == NULL) {
FatalError(SC_ERR_INITIALIZATION, "decoder counter hash "
"table init failed");
}
}
char name[256];
char *dot = index(DEvents[i].event_name, '.');
BUG_ON(!dot);
snprintf(name, sizeof(name), "%s.%s",
stats_decoder_events_prefix, dot+1);
const char *found = HashTableLookup(g_counter_table, name, 0);
if (!found) {
char *add = SCStrdup(name);
if (add == NULL)
FatalError(SC_ERR_INITIALIZATION, "decoder counter hash "
"table name init failed");
int r = HashTableAdd(g_counter_table, add, 0);
if (r != 0)
FatalError(SC_ERR_INITIALIZATION, "decoder counter hash "
"table name add failed");
found = add;
}
dtv->counter_engine_events[i] = StatsRegisterCounter(
found, tv);
SCMutexUnlock(&g_counter_table_mutex);
} else {
dtv->counter_engine_events[i] = StatsRegisterCounter(
DEvents[i].event_name, tv);
}
}
return;
}
void DecodeUpdatePacketCounters(ThreadVars *tv,
const DecodeThreadVars *dtv, const Packet *p)
{
StatsIncr(tv, dtv->counter_pkts);
//StatsIncr(tv, dtv->counter_pkts_per_sec);
StatsAddUI64(tv, dtv->counter_bytes, GET_PKT_LEN(p));
StatsAddUI64(tv, dtv->counter_avg_pkt_size, GET_PKT_LEN(p));
StatsSetUI64(tv, dtv->counter_max_pkt_size, GET_PKT_LEN(p));
}
/**
* \brief Debug print function for printing addresses
*
* \param Address object
*
* \todo IPv6
*/
void AddressDebugPrint(Address *a)
{
if (a == NULL)
return;
switch (a->family) {
case AF_INET:
{
char s[16];
PrintInet(AF_INET, (const void *)&a->addr_data32[0], s, sizeof(s));
SCLogDebug("%s", s);
break;
}
}
}
/** \brief Alloc and setup DecodeThreadVars */
DecodeThreadVars *DecodeThreadVarsAlloc(ThreadVars *tv)
{
DecodeThreadVars *dtv = NULL;
if ( (dtv = SCMalloc(sizeof(DecodeThreadVars))) == NULL)
return NULL;
memset(dtv, 0, sizeof(DecodeThreadVars));
dtv->app_tctx = AppLayerGetCtxThread(tv);
if (OutputFlowLogThreadInit(tv, NULL, &dtv->output_flow_thread_data) != TM_ECODE_OK) {
SCLogError(SC_ERR_THREAD_INIT, "initializing flow log API for thread failed");
DecodeThreadVarsFree(tv, dtv);
return NULL;
}
/** set config defaults */
int vlanbool = 0;
if ((ConfGetBool("vlan.use-for-tracking", &vlanbool)) == 1 && vlanbool == 0) {
dtv->vlan_disabled = 1;
}
SCLogDebug("vlan tracking is %s", dtv->vlan_disabled == 0 ? "enabled" : "disabled");
return dtv;
}
void DecodeThreadVarsFree(ThreadVars *tv, DecodeThreadVars *dtv)
{
if (dtv != NULL) {
if (dtv->app_tctx != NULL)
AppLayerDestroyCtxThread(dtv->app_tctx);
if (dtv->output_flow_thread_data != NULL)
OutputFlowLogThreadDeinit(tv, dtv->output_flow_thread_data);
SCFree(dtv);
}
}
/**
* \brief Set data for Packet and set length when zeo copy is used
*
* \param Pointer to the Packet to modify
* \param Pointer to the data
* \param Length of the data
*/
inline int PacketSetData(Packet *p, uint8_t *pktdata, uint32_t pktlen)
{
SET_PKT_LEN(p, (size_t)pktlen);
if (unlikely(!pktdata)) {
return -1;
}
p->ext_pkt = pktdata;
p->flags |= PKT_ZERO_COPY;
return 0;
}
const char *PktSrcToString(enum PktSrcEnum pkt_src)
{
const char *pkt_src_str = "<unknown>";
switch (pkt_src) {
case PKT_SRC_WIRE:
pkt_src_str = "wire/pcap";
break;
case PKT_SRC_DECODER_GRE:
pkt_src_str = "gre tunnel";
break;
case PKT_SRC_DECODER_IPV4:
pkt_src_str = "ipv4 tunnel";
break;
case PKT_SRC_DECODER_IPV6:
pkt_src_str = "ipv6 tunnel";
break;
case PKT_SRC_DECODER_TEREDO:
pkt_src_str = "teredo tunnel";
break;
case PKT_SRC_DEFRAG:
pkt_src_str = "defrag";
break;
case PKT_SRC_STREAM_TCP_STREAM_END_PSEUDO:
pkt_src_str = "stream";
break;
case PKT_SRC_STREAM_TCP_DETECTLOG_FLUSH:
pkt_src_str = "stream (detect/log)";
break;
case PKT_SRC_FFR:
pkt_src_str = "stream (flow timeout)";
break;
}
return pkt_src_str;
}
void CaptureStatsUpdate(ThreadVars *tv, CaptureStats *s, const Packet *p)
{
if (unlikely(PACKET_TEST_ACTION(p, (ACTION_REJECT|ACTION_REJECT_DST|ACTION_REJECT_BOTH)))) {
StatsIncr(tv, s->counter_ips_rejected);
} else if (unlikely(PACKET_TEST_ACTION(p, ACTION_DROP))) {
StatsIncr(tv, s->counter_ips_blocked);
} else if (unlikely(p->flags & PKT_STREAM_MODIFIED)) {
StatsIncr(tv, s->counter_ips_replaced);
} else {
StatsIncr(tv, s->counter_ips_accepted);
}
}
void CaptureStatsSetup(ThreadVars *tv, CaptureStats *s)
{
s->counter_ips_accepted = StatsRegisterCounter("ips.accepted", tv);
s->counter_ips_blocked = StatsRegisterCounter("ips.blocked", tv);
s->counter_ips_rejected = StatsRegisterCounter("ips.rejected", tv);
s->counter_ips_replaced = StatsRegisterCounter("ips.replaced", tv);
}
void DecodeGlobalConfig(void)
{
DecodeTeredoConfig();
}
/**
* @}
*/