You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
suricata/src/flow-worker.c

709 lines
24 KiB
C

/* Copyright (C) 2016-2020 Open Information Security Foundation
*
* You can copy, redistribute or modify this Program under the terms of
* the GNU General Public License version 2 as published by the Free
* Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* version 2 along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA.
*/
/**
* \file
*
* \author Victor Julien <victor@inliniac.net>
*
* Flow Workers are single thread modules taking care of (almost)
* everything related to packets with flows:
*
* - Lookup/creation
* - Stream tracking, reassembly
* - Applayer update
* - Detection
*
* This all while holding the flow lock.
*/
#include "suricata-common.h"
#include "suricata.h"
#include "action-globals.h"
#include "packet.h"
#include "decode.h"
#include "detect.h"
#include "stream-tcp.h"
#include "app-layer.h"
#include "detect-engine.h"
#include "output.h"
#include "app-layer-parser.h"
#include "app-layer-frames.h"
#include "util-profiling.h"
#include "util-validate.h"
#include "util-time.h"
#include "tmqh-packetpool.h"
#include "flow-util.h"
#include "flow-manager.h"
#include "flow-timeout.h"
#include "flow-spare-pool.h"
#include "flow-worker.h"
typedef DetectEngineThreadCtx *DetectEngineThreadCtxPtr;
typedef struct FlowTimeoutCounters {
uint32_t flows_aside_needs_work;
uint32_t flows_aside_pkt_inject;
} FlowTimeoutCounters;
typedef struct FlowWorkerThreadData_ {
DecodeThreadVars *dtv;
union {
StreamTcpThread *stream_thread;
void *stream_thread_ptr;
};
SC_ATOMIC_DECLARE(DetectEngineThreadCtxPtr, detect_thread);
void *output_thread; /* Output thread data. */
void *output_thread_flow; /* Output thread data. */
uint16_t local_bypass_pkts;
uint16_t local_bypass_bytes;
uint16_t both_bypass_pkts;
uint16_t both_bypass_bytes;
/** Queue to put pseudo packets that have been created by the stream (RST response) and by the
* flush logic following a protocol change. */
PacketQueueNoLock pq;
FlowLookupStruct fls;
struct {
uint16_t flows_injected;
uint16_t flows_injected_max;
uint16_t flows_removed;
uint16_t flows_aside_needs_work;
uint16_t flows_aside_pkt_inject;
} cnt;
FlowEndCounters fec;
} FlowWorkerThreadData;
static void FlowWorkerFlowTimeout(ThreadVars *tv, Packet *p, FlowWorkerThreadData *fw, void *detect_thread);
Packet *FlowForceReassemblyPseudoPacketGet(int direction, Flow *f, TcpSession *ssn);
/**
* \internal
* \brief Forces reassembly for flow if it needs it.
*
* The function requires flow to be locked beforehand.
*
* \param f Pointer to the flow.
*
* \retval cnt number of packets injected
*/
static int FlowFinish(ThreadVars *tv, Flow *f, FlowWorkerThreadData *fw, void *detect_thread)
{
Packet *p1 = NULL, *p2 = NULL;
const int server = f->ffr_tc;
const int client = f->ffr_ts;
/* Get the tcp session for the flow */
TcpSession *ssn = (TcpSession *)f->protoctx;
/* The packets we use are based on what segments in what direction are
* unprocessed.
* p1 if we have client segments for reassembly purpose only. If we
* have no server segments p2 can be a toserver packet with dummy
* seq/ack, and if we have server segments p2 has to carry out reassembly
* for server segment as well, in which case we will also need a p3 in the
* toclient which is now dummy since all we need it for is detection */
/* insert a pseudo packet in the toserver direction */
if (client == STREAM_HAS_UNPROCESSED_SEGMENTS_NEED_ONLY_DETECTION) {
p1 = FlowForceReassemblyPseudoPacketGet(0, f, ssn);
if (p1 == NULL) {
return 0;
}
PKT_SET_SRC(p1, PKT_SRC_FFR);
if (server == STREAM_HAS_UNPROCESSED_SEGMENTS_NEED_ONLY_DETECTION) {
p2 = FlowForceReassemblyPseudoPacketGet(1, f, ssn);
if (p2 == NULL) {
FlowDeReference(&p1->flow);
TmqhOutputPacketpool(NULL, p1);
return 0;
}
PKT_SET_SRC(p2, PKT_SRC_FFR);
p2->flowflags |= FLOW_PKT_LAST_PSEUDO;
} else {
p1->flowflags |= FLOW_PKT_LAST_PSEUDO;
}
} else {
if (server == STREAM_HAS_UNPROCESSED_SEGMENTS_NEED_ONLY_DETECTION) {
p1 = FlowForceReassemblyPseudoPacketGet(1, f, ssn);
if (p1 == NULL) {
return 0;
}
PKT_SET_SRC(p1, PKT_SRC_FFR);
p1->flowflags |= FLOW_PKT_LAST_PSEUDO;
} else {
/* impossible */
BUG_ON(1);
}
}
f->flags |= FLOW_TIMEOUT_REASSEMBLY_DONE;
FlowWorkerFlowTimeout(tv, p1, fw, detect_thread);
PacketPoolReturnPacket(p1);
if (p2) {
FlowWorkerFlowTimeout(tv, p2, fw, detect_thread);
PacketPoolReturnPacket(p2);
return 2;
}
return 1;
}
extern uint32_t flow_spare_pool_block_size;
/** \param[in] max_work Max flows to process. 0 if unlimited. */
static void CheckWorkQueue(ThreadVars *tv, FlowWorkerThreadData *fw, FlowTimeoutCounters *counters,
FlowQueuePrivate *fq, const uint32_t max_work)
{
FlowQueuePrivate ret_queue = { NULL, NULL, 0 };
uint32_t i = 0;
Flow *f;
while ((f = FlowQueuePrivateGetFromTop(fq)) != NULL) {
FLOWLOCK_WRLOCK(f);
f->flow_end_flags |= FLOW_END_FLAG_TIMEOUT; //TODO emerg
if (f->proto == IPPROTO_TCP) {
if (!(f->flags & (FLOW_TIMEOUT_REASSEMBLY_DONE | FLOW_ACTION_DROP)) &&
!FlowIsBypassed(f) && FlowForceReassemblyNeedReassembly(f) == 1 &&
f->ffr != 0) {
/* read detect thread in case we're doing a reload */
void *detect_thread = SC_ATOMIC_GET(fw->detect_thread);
int cnt = FlowFinish(tv, f, fw, detect_thread);
counters->flows_aside_pkt_inject += cnt;
counters->flows_aside_needs_work++;
}
}
/* no one is referring to this flow, removed from hash
* so we can unlock it and pass it to the flow recycler */
if (fw->output_thread_flow != NULL)
(void)OutputFlowLog(tv, fw->output_thread_flow, f);
FlowEndCountersUpdate(tv, &fw->fec, f);
if (f->proto == IPPROTO_TCP && f->protoctx != NULL) {
StatsDecr(tv, fw->dtv->counter_tcp_active_sessions);
}
StatsDecr(tv, fw->dtv->counter_flow_active);
FlowClearMemory (f, f->protomap);
FLOWLOCK_UNLOCK(f);
if (fw->fls.spare_queue.len >= (flow_spare_pool_block_size * 2)) {
FlowQueuePrivatePrependFlow(&ret_queue, f);
if (ret_queue.len == flow_spare_pool_block_size) {
FlowSparePoolReturnFlows(&ret_queue);
}
} else {
FlowQueuePrivatePrependFlow(&fw->fls.spare_queue, f);
}
if (max_work != 0 && ++i == max_work)
break;
}
if (ret_queue.len > 0) {
FlowSparePoolReturnFlows(&ret_queue);
}
StatsAddUI64(tv, fw->cnt.flows_removed, (uint64_t)i);
}
/** \brief handle flow for packet
*
* Handle flow creation/lookup
*/
static inline TmEcode FlowUpdate(ThreadVars *tv, FlowWorkerThreadData *fw, Packet *p)
{
FlowHandlePacketUpdate(p->flow, p, tv, fw->dtv);
int state = p->flow->flow_state;
switch (state) {
#ifdef CAPTURE_OFFLOAD
case FLOW_STATE_CAPTURE_BYPASSED: {
StatsAddUI64(tv, fw->both_bypass_pkts, 1);
StatsAddUI64(tv, fw->both_bypass_bytes, GET_PKT_LEN(p));
Flow *f = p->flow;
FlowDeReference(&p->flow);
FLOWLOCK_UNLOCK(f);
return TM_ECODE_DONE;
}
#endif
case FLOW_STATE_LOCAL_BYPASSED: {
StatsAddUI64(tv, fw->local_bypass_pkts, 1);
StatsAddUI64(tv, fw->local_bypass_bytes, GET_PKT_LEN(p));
Flow *f = p->flow;
FlowDeReference(&p->flow);
FLOWLOCK_UNLOCK(f);
return TM_ECODE_DONE;
}
default:
return TM_ECODE_OK;
}
}
static TmEcode FlowWorkerThreadDeinit(ThreadVars *tv, void *data);
static TmEcode FlowWorkerThreadInit(ThreadVars *tv, const void *initdata, void **data)
{
FlowWorkerThreadData *fw = SCCalloc(1, sizeof(*fw));
if (fw == NULL)
return TM_ECODE_FAILED;
SC_ATOMIC_INITPTR(fw->detect_thread);
SC_ATOMIC_SET(fw->detect_thread, NULL);
fw->local_bypass_pkts = StatsRegisterCounter("flow_bypassed.local_pkts", tv);
fw->local_bypass_bytes = StatsRegisterCounter("flow_bypassed.local_bytes", tv);
fw->both_bypass_pkts = StatsRegisterCounter("flow_bypassed.local_capture_pkts", tv);
fw->both_bypass_bytes = StatsRegisterCounter("flow_bypassed.local_capture_bytes", tv);
fw->cnt.flows_aside_needs_work = StatsRegisterCounter("flow.wrk.flows_evicted_needs_work", tv);
fw->cnt.flows_aside_pkt_inject = StatsRegisterCounter("flow.wrk.flows_evicted_pkt_inject", tv);
fw->cnt.flows_removed = StatsRegisterCounter("flow.wrk.flows_evicted", tv);
fw->cnt.flows_injected = StatsRegisterCounter("flow.wrk.flows_injected", tv);
fw->cnt.flows_injected_max = StatsRegisterMaxCounter("flow.wrk.flows_injected_max", tv);
fw->fls.dtv = fw->dtv = DecodeThreadVarsAlloc(tv);
if (fw->dtv == NULL) {
FlowWorkerThreadDeinit(tv, fw);
return TM_ECODE_FAILED;
}
/* setup TCP */
if (StreamTcpThreadInit(tv, NULL, &fw->stream_thread_ptr) != TM_ECODE_OK) {
FlowWorkerThreadDeinit(tv, fw);
return TM_ECODE_FAILED;
}
if (DetectEngineEnabled()) {
/* setup DETECT */
void *detect_thread = NULL;
if (DetectEngineThreadCtxInit(tv, NULL, &detect_thread) != TM_ECODE_OK) {
FlowWorkerThreadDeinit(tv, fw);
return TM_ECODE_FAILED;
}
SC_ATOMIC_SET(fw->detect_thread, detect_thread);
}
/* Setup outputs for this thread. */
if (OutputLoggerThreadInit(tv, initdata, &fw->output_thread) != TM_ECODE_OK) {
FlowWorkerThreadDeinit(tv, fw);
return TM_ECODE_FAILED;
}
if (OutputFlowLogThreadInit(tv, NULL, &fw->output_thread_flow) != TM_ECODE_OK) {
SCLogError("initializing flow log API for thread failed");
FlowWorkerThreadDeinit(tv, fw);
return TM_ECODE_FAILED;
}
DecodeRegisterPerfCounters(fw->dtv, tv);
AppLayerRegisterThreadCounters(tv);
FlowEndCountersRegister(tv, &fw->fec);
/* setup pq for stream end pkts */
memset(&fw->pq, 0, sizeof(PacketQueueNoLock));
*data = fw;
return TM_ECODE_OK;
}
static TmEcode FlowWorkerThreadDeinit(ThreadVars *tv, void *data)
{
FlowWorkerThreadData *fw = data;
DecodeThreadVarsFree(tv, fw->dtv);
/* free TCP */
StreamTcpThreadDeinit(tv, (void *)fw->stream_thread);
/* free DETECT */
void *detect_thread = SC_ATOMIC_GET(fw->detect_thread);
if (detect_thread != NULL) {
DetectEngineThreadCtxDeinit(tv, detect_thread);
SC_ATOMIC_SET(fw->detect_thread, NULL);
}
/* Free output. */
OutputLoggerThreadDeinit(tv, fw->output_thread);
OutputFlowLogThreadDeinit(tv, fw->output_thread_flow);
/* free pq */
BUG_ON(fw->pq.len);
Flow *f;
while ((f = FlowQueuePrivateGetFromTop(&fw->fls.spare_queue)) != NULL) {
FlowFree(f);
}
SCFree(fw);
return TM_ECODE_OK;
}
TmEcode Detect(ThreadVars *tv, Packet *p, void *data);
TmEcode StreamTcp (ThreadVars *, Packet *, void *, PacketQueueNoLock *pq);
static inline void UpdateCounters(ThreadVars *tv,
FlowWorkerThreadData *fw, const FlowTimeoutCounters *counters)
{
if (counters->flows_aside_needs_work) {
StatsAddUI64(tv, fw->cnt.flows_aside_needs_work,
(uint64_t)counters->flows_aside_needs_work);
}
if (counters->flows_aside_pkt_inject) {
StatsAddUI64(tv, fw->cnt.flows_aside_pkt_inject,
(uint64_t)counters->flows_aside_pkt_inject);
}
}
/** \brief update stream engine
*
* We can be called from both the flow timeout path as well as from the
* "real" traffic path. If in the timeout path any additional packets we
* forge for flushing pipelines should not leave our scope. If the original
* packet is real (or related to a real packet) we need to push the packets
* on, so IPS logic stays valid.
*/
static inline void FlowWorkerStreamTCPUpdate(ThreadVars *tv, FlowWorkerThreadData *fw, Packet *p,
void *detect_thread, const bool timeout)
{
FLOWWORKER_PROFILING_START(p, PROFILE_FLOWWORKER_STREAM);
StreamTcp(tv, p, fw->stream_thread, &fw->pq);
FLOWWORKER_PROFILING_END(p, PROFILE_FLOWWORKER_STREAM);
if (FlowChangeProto(p->flow)) {
StreamTcpDetectLogFlush(tv, fw->stream_thread, p->flow, p, &fw->pq);
AppLayerParserStateSetFlag(p->flow->alparser, APP_LAYER_PARSER_EOF_TS);
AppLayerParserStateSetFlag(p->flow->alparser, APP_LAYER_PARSER_EOF_TC);
}
/* Packets here can safely access p->flow as it's locked */
SCLogDebug("packet %"PRIu64": extra packets %u", p->pcap_cnt, fw->pq.len);
Packet *x;
while ((x = PacketDequeueNoLock(&fw->pq))) {
SCLogDebug("packet %"PRIu64" extra packet %p", p->pcap_cnt, x);
if (detect_thread != NULL) {
FLOWWORKER_PROFILING_START(x, PROFILE_FLOWWORKER_DETECT);
Detect(tv, x, detect_thread);
FLOWWORKER_PROFILING_END(x, PROFILE_FLOWWORKER_DETECT);
}
OutputLoggerLog(tv, x, fw->output_thread);
FramesPrune(x->flow, x);
/* Release tcp segments. Done here after alerting can use them. */
FLOWWORKER_PROFILING_START(x, PROFILE_FLOWWORKER_TCPPRUNE);
StreamTcpPruneSession(
x->flow, x->flowflags & FLOW_PKT_TOSERVER ? STREAM_TOSERVER : STREAM_TOCLIENT);
FLOWWORKER_PROFILING_END(x, PROFILE_FLOWWORKER_TCPPRUNE);
/* no need to keep a flow ref beyond this point */
FlowDeReference(&x->flow);
/* no further work to do for this pseudo packet, so we can return
* it to the pool immediately. */
if (timeout) {
PacketPoolReturnPacket(x);
} else {
/* to support IPS verdict logic, in the non-timeout case we need to do a bit more */
TmqhOutputPacketpool(tv, x);
}
}
}
static void FlowWorkerFlowTimeout(ThreadVars *tv, Packet *p, FlowWorkerThreadData *fw,
void *detect_thread)
{
DEBUG_VALIDATE_BUG_ON(p->pkt_src != PKT_SRC_FFR);
SCLogDebug("packet %"PRIu64" is TCP. Direction %s", p->pcap_cnt, PKT_IS_TOSERVER(p) ? "TOSERVER" : "TOCLIENT");
DEBUG_VALIDATE_BUG_ON(!(p->flow && PKT_IS_TCP(p)));
DEBUG_ASSERT_FLOW_LOCKED(p->flow);
/* handle TCP and app layer */
FlowWorkerStreamTCPUpdate(tv, fw, p, detect_thread, true);
PacketUpdateEngineEventCounters(tv, fw->dtv, p);
/* handle Detect */
SCLogDebug("packet %"PRIu64" calling Detect", p->pcap_cnt);
if (detect_thread != NULL) {
FLOWWORKER_PROFILING_START(p, PROFILE_FLOWWORKER_DETECT);
Detect(tv, p, detect_thread);
FLOWWORKER_PROFILING_END(p, PROFILE_FLOWWORKER_DETECT);
}
// Outputs.
OutputLoggerLog(tv, p, fw->output_thread);
FramesPrune(p->flow, p);
/* Release tcp segments. Done here after alerting can use them. */
FLOWWORKER_PROFILING_START(p, PROFILE_FLOWWORKER_TCPPRUNE);
StreamTcpPruneSession(p->flow, p->flowflags & FLOW_PKT_TOSERVER ?
STREAM_TOSERVER : STREAM_TOCLIENT);
FLOWWORKER_PROFILING_END(p, PROFILE_FLOWWORKER_TCPPRUNE);
/* run tx cleanup last */
AppLayerParserTransactionsCleanup(p->flow, STREAM_FLAGS_FOR_PACKET(p));
FlowDeReference(&p->flow);
/* flow is unlocked later in FlowFinish() */
}
/** \internal
* \brief process flows injected into our queue by other threads
*/
static inline void FlowWorkerProcessInjectedFlows(
ThreadVars *tv, FlowWorkerThreadData *fw, Packet *p)
{
/* take injected flows and append to our work queue */
FLOWWORKER_PROFILING_START(p, PROFILE_FLOWWORKER_FLOW_INJECTED);
FlowQueuePrivate injected = { NULL, NULL, 0 };
if (SC_ATOMIC_GET(tv->flow_queue->non_empty) == true)
injected = FlowQueueExtractPrivate(tv->flow_queue);
if (injected.len > 0) {
StatsAddUI64(tv, fw->cnt.flows_injected, (uint64_t)injected.len);
if (p->pkt_src == PKT_SRC_WIRE)
StatsSetUI64(tv, fw->cnt.flows_injected_max, (uint64_t)injected.len);
/* move to local queue so we can process over the course of multiple packets */
FlowQueuePrivateAppendPrivate(&fw->fls.work_queue, &injected);
}
FLOWWORKER_PROFILING_END(p, PROFILE_FLOWWORKER_FLOW_INJECTED);
}
/** \internal
* \brief process flows set aside locally during flow lookup
*/
static inline void FlowWorkerProcessLocalFlows(ThreadVars *tv, FlowWorkerThreadData *fw, Packet *p)
{
uint32_t max_work = 2;
if (p->pkt_src == PKT_SRC_SHUTDOWN_FLUSH || p->pkt_src == PKT_SRC_CAPTURE_TIMEOUT)
max_work = 0;
FLOWWORKER_PROFILING_START(p, PROFILE_FLOWWORKER_FLOW_EVICTED);
if (fw->fls.work_queue.len) {
FlowTimeoutCounters counters = { 0, 0, };
CheckWorkQueue(tv, fw, &counters, &fw->fls.work_queue, max_work);
UpdateCounters(tv, fw, &counters);
}
FLOWWORKER_PROFILING_END(p, PROFILE_FLOWWORKER_FLOW_EVICTED);
}
static TmEcode FlowWorker(ThreadVars *tv, Packet *p, void *data)
{
FlowWorkerThreadData *fw = data;
void *detect_thread = SC_ATOMIC_GET(fw->detect_thread);
DEBUG_VALIDATE_BUG_ON(p == NULL);
DEBUG_VALIDATE_BUG_ON(tv->flow_queue == NULL);
SCLogDebug("packet %"PRIu64, p->pcap_cnt);
/* update time */
if (!(PKT_IS_PSEUDOPKT(p))) {
TimeSetByThread(tv->id, p->ts);
}
/* handle Flow */
if (p->flags & PKT_WANTS_FLOW) {
FLOWWORKER_PROFILING_START(p, PROFILE_FLOWWORKER_FLOW);
FlowHandlePacket(tv, &fw->fls, p);
if (likely(p->flow != NULL)) {
DEBUG_ASSERT_FLOW_LOCKED(p->flow);
if (FlowUpdate(tv, fw, p) == TM_ECODE_DONE) {
goto housekeeping;
}
}
/* Flow is now LOCKED */
FLOWWORKER_PROFILING_END(p, PROFILE_FLOWWORKER_FLOW);
/* if PKT_WANTS_FLOW is not set, but PKT_HAS_FLOW is, then this is a
* pseudo packet created by the flow manager. */
} else if (p->flags & PKT_HAS_FLOW) {
FLOWLOCK_WRLOCK(p->flow);
DEBUG_VALIDATE_BUG_ON(p->pkt_src != PKT_SRC_FFR);
}
SCLogDebug("packet %"PRIu64" has flow? %s", p->pcap_cnt, p->flow ? "yes" : "no");
/* handle TCP and app layer */
if (p->flow) {
if (PKT_IS_TCP(p)) {
SCLogDebug("packet %" PRIu64 " is TCP. Direction %s", p->pcap_cnt,
PKT_IS_TOSERVER(p) ? "TOSERVER" : "TOCLIENT");
DEBUG_ASSERT_FLOW_LOCKED(p->flow);
/* if detect is disabled, we need to apply file flags to the flow
* here on the first packet. */
if (detect_thread == NULL &&
((PKT_IS_TOSERVER(p) && (p->flowflags & FLOW_PKT_TOSERVER_FIRST)) ||
(PKT_IS_TOCLIENT(p) && (p->flowflags & FLOW_PKT_TOCLIENT_FIRST)))) {
DisableDetectFlowFileFlags(p->flow);
}
FlowWorkerStreamTCPUpdate(tv, fw, p, detect_thread, false);
/* handle the app layer part of the UDP packet payload */
} else if (p->proto == IPPROTO_UDP && !PacketCheckAction(p, ACTION_DROP)) {
FLOWWORKER_PROFILING_START(p, PROFILE_FLOWWORKER_APPLAYERUDP);
AppLayerHandleUdp(tv, fw->stream_thread->ra_ctx->app_tctx, p, p->flow);
FLOWWORKER_PROFILING_END(p, PROFILE_FLOWWORKER_APPLAYERUDP);
}
}
PacketUpdateEngineEventCounters(tv, fw->dtv, p);
/* handle Detect */
DEBUG_ASSERT_FLOW_LOCKED(p->flow);
SCLogDebug("packet %"PRIu64" calling Detect", p->pcap_cnt);
if (detect_thread != NULL) {
FLOWWORKER_PROFILING_START(p, PROFILE_FLOWWORKER_DETECT);
Detect(tv, p, detect_thread);
FLOWWORKER_PROFILING_END(p, PROFILE_FLOWWORKER_DETECT);
}
// Outputs.
OutputLoggerLog(tv, p, fw->output_thread);
/* Release tcp segments. Done here after alerting can use them. */
if (p->flow != NULL) {
DEBUG_ASSERT_FLOW_LOCKED(p->flow);
if (FlowIsBypassed(p->flow)) {
FlowCleanupAppLayer(p->flow);
if (p->proto == IPPROTO_TCP) {
StreamTcpSessionCleanup(p->flow->protoctx);
}
} else if (p->proto == IPPROTO_TCP && p->flow->protoctx) {
FramesPrune(p->flow, p);
FLOWWORKER_PROFILING_START(p, PROFILE_FLOWWORKER_TCPPRUNE);
StreamTcpPruneSession(p->flow, p->flowflags & FLOW_PKT_TOSERVER ?
STREAM_TOSERVER : STREAM_TOCLIENT);
FLOWWORKER_PROFILING_END(p, PROFILE_FLOWWORKER_TCPPRUNE);
} else if (p->proto == IPPROTO_UDP) {
FramesPrune(p->flow, p);
}
if ((PKT_IS_PSEUDOPKT(p)) || ((p->flags & PKT_APPLAYER_UPDATE) != 0)) {
SCLogDebug("pseudo or app update: run cleanup");
/* run tx cleanup last */
AppLayerParserTransactionsCleanup(p->flow, STREAM_FLAGS_FOR_PACKET(p));
} else {
SCLogDebug("not pseudo, no app update: skip");
}
Flow *f = p->flow;
FlowDeReference(&p->flow);
FLOWLOCK_UNLOCK(f);
}
housekeeping:
/* take injected flows and add them to our local queue */
FlowWorkerProcessInjectedFlows(tv, fw, p);
/* process local work queue */
FlowWorkerProcessLocalFlows(tv, fw, p);
return TM_ECODE_OK;
}
void FlowWorkerReplaceDetectCtx(void *flow_worker, void *detect_ctx)
{
FlowWorkerThreadData *fw = flow_worker;
SC_ATOMIC_SET(fw->detect_thread, detect_ctx);
}
void *FlowWorkerGetDetectCtxPtr(void *flow_worker)
{
FlowWorkerThreadData *fw = flow_worker;
return SC_ATOMIC_GET(fw->detect_thread);
}
const char *ProfileFlowWorkerIdToString(enum ProfileFlowWorkerId fwi)
{
switch (fwi) {
case PROFILE_FLOWWORKER_FLOW:
return "flow";
case PROFILE_FLOWWORKER_STREAM:
return "stream";
case PROFILE_FLOWWORKER_APPLAYERUDP:
return "app-layer";
case PROFILE_FLOWWORKER_DETECT:
return "detect";
case PROFILE_FLOWWORKER_TCPPRUNE:
return "tcp-prune";
case PROFILE_FLOWWORKER_FLOW_INJECTED:
return "flow-inject";
case PROFILE_FLOWWORKER_FLOW_EVICTED:
return "flow-evict";
case PROFILE_FLOWWORKER_SIZE:
return "size";
}
return "error";
}
static void FlowWorkerExitPrintStats(ThreadVars *tv, void *data)
{
FlowWorkerThreadData *fw = data;
OutputLoggerExitPrintStats(tv, fw->output_thread);
}
static bool FlowWorkerIsBusy(ThreadVars *tv, void *flow_worker)
{
FlowWorkerThreadData *fw = flow_worker;
if (fw->pq.len)
return true;
if (fw->fls.work_queue.len)
return true;
if (tv->flow_queue) {
FQLOCK_LOCK(tv->flow_queue);
bool fq_done = (tv->flow_queue->qlen == 0);
FQLOCK_UNLOCK(tv->flow_queue);
if (!fq_done) {
return true;
}
}
return false;
}
void TmModuleFlowWorkerRegister (void)
{
tmm_modules[TMM_FLOWWORKER].name = "FlowWorker";
tmm_modules[TMM_FLOWWORKER].ThreadInit = FlowWorkerThreadInit;
tmm_modules[TMM_FLOWWORKER].Func = FlowWorker;
tmm_modules[TMM_FLOWWORKER].ThreadBusy = FlowWorkerIsBusy;
tmm_modules[TMM_FLOWWORKER].ThreadDeinit = FlowWorkerThreadDeinit;
tmm_modules[TMM_FLOWWORKER].ThreadExitPrintStats = FlowWorkerExitPrintStats;
tmm_modules[TMM_FLOWWORKER].cap_flags = 0;
tmm_modules[TMM_FLOWWORKER].flags = TM_FLAG_STREAM_TM|TM_FLAG_DETECT_TM;
}