You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
suricata/src/flow-manager.c

1297 lines
42 KiB
C

/* Copyright (C) 2007-2024 Open Information Security Foundation
*
* You can copy, redistribute or modify this Program under the terms of
* the GNU General Public License version 2 as published by the Free
* Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* version 2 along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA.
*/
/**
* \file
*
* \author Anoop Saldanha <anoopsaldanha@gmail.com>
* \author Victor Julien <victor@inliniac.net>
*/
#include "suricata-common.h"
#include "conf.h"
#include "threadvars.h"
#include "tm-threads.h"
#include "runmodes.h"
#include "util-time.h"
#include "flow.h"
#include "flow-queue.h"
#include "flow-hash.h"
#include "flow-util.h"
#include "flow-private.h"
#include "flow-timeout.h"
#include "flow-manager.h"
#include "flow-storage.h"
#include "flow-spare-pool.h"
#include "stream-tcp.h"
#include "util-device.h"
#include "util-debug.h"
#include "threads.h"
#include "host-timeout.h"
#include "defrag-hash.h"
#include "defrag-timeout.h"
#include "ippair-timeout.h"
#include "app-layer-htp-range.h"
#include "output-flow.h"
#include "runmode-unix-socket.h"
/** queue to pass flows to cleanup/log thread(s) */
FlowQueue flow_recycle_q;
/* multi flow manager support */
static uint32_t flowmgr_number = 1;
/* atomic counter for flow managers, to assign instance id */
SC_ATOMIC_DECLARE(uint32_t, flowmgr_cnt);
/* multi flow recycler support */
static uint32_t flowrec_number = 1;
/* atomic counter for flow recyclers, to assign instance id */
SC_ATOMIC_DECLARE(uint32_t, flowrec_cnt);
SC_ATOMIC_DECLARE(uint32_t, flowrec_busy);
SC_ATOMIC_EXTERN(unsigned int, flow_flags);
static SCCtrlCondT flow_manager_ctrl_cond = PTHREAD_COND_INITIALIZER;
static SCCtrlMutex flow_manager_ctrl_mutex = PTHREAD_MUTEX_INITIALIZER;
static SCCtrlCondT flow_recycler_ctrl_cond = PTHREAD_COND_INITIALIZER;
static SCCtrlMutex flow_recycler_ctrl_mutex = PTHREAD_MUTEX_INITIALIZER;
void FlowWakeupFlowManagerThread(void)
{
SCCtrlMutexLock(&flow_manager_ctrl_mutex);
SCCtrlCondSignal(&flow_manager_ctrl_cond);
SCCtrlMutexUnlock(&flow_manager_ctrl_mutex);
}
void FlowWakeupFlowRecyclerThread(void)
{
SCCtrlMutexLock(&flow_recycler_ctrl_mutex);
SCCtrlCondSignal(&flow_recycler_ctrl_cond);
SCCtrlMutexUnlock(&flow_recycler_ctrl_mutex);
}
void FlowTimeoutsInit(void)
{
SC_ATOMIC_SET(flow_timeouts, flow_timeouts_normal);
}
void FlowTimeoutsEmergency(void)
{
SC_ATOMIC_SET(flow_timeouts, flow_timeouts_emerg);
}
typedef struct FlowTimeoutCounters_ {
uint32_t rows_checked;
uint32_t rows_skipped;
uint32_t rows_empty;
uint32_t rows_maxlen;
uint32_t flows_checked;
uint32_t flows_notimeout;
uint32_t flows_timeout;
uint32_t flows_removed;
uint32_t flows_aside;
uint32_t flows_aside_needs_work;
uint32_t bypassed_count;
uint64_t bypassed_pkts;
uint64_t bypassed_bytes;
} FlowTimeoutCounters;
/**
* \brief Used to disable flow manager thread(s).
*
* \todo Kinda hackish since it uses the tv name to identify flow manager
* thread. We need an all weather identification scheme.
*/
void FlowDisableFlowManagerThread(void)
{
SCMutexLock(&tv_root_lock);
/* flow manager thread(s) is/are a part of mgmt threads */
for (ThreadVars *tv = tv_root[TVT_MGMT]; tv != NULL; tv = tv->next) {
if (strncasecmp(tv->name, thread_name_flow_mgr,
strlen(thread_name_flow_mgr)) == 0)
{
TmThreadsSetFlag(tv, THV_KILL);
}
}
SCMutexUnlock(&tv_root_lock);
struct timeval start_ts;
struct timeval cur_ts;
gettimeofday(&start_ts, NULL);
again:
gettimeofday(&cur_ts, NULL);
if ((cur_ts.tv_sec - start_ts.tv_sec) > 60) {
FatalError("unable to get all flow manager "
"threads to shutdown in time");
}
SCMutexLock(&tv_root_lock);
for (ThreadVars *tv = tv_root[TVT_MGMT]; tv != NULL; tv = tv->next) {
if (strncasecmp(tv->name, thread_name_flow_mgr,
strlen(thread_name_flow_mgr)) == 0)
{
if (!TmThreadsCheckFlag(tv, THV_RUNNING_DONE)) {
SCMutexUnlock(&tv_root_lock);
/* sleep outside lock */
SleepMsec(1);
goto again;
}
}
}
SCMutexUnlock(&tv_root_lock);
/* reset count, so we can kill and respawn (unix socket) */
SC_ATOMIC_SET(flowmgr_cnt, 0);
}
/** \internal
* \brief check if a flow is timed out
*
* \param f flow
* \param ts timestamp
*
* \retval false not timed out
* \retval true timed out
*/
static bool FlowManagerFlowTimeout(Flow *f, SCTime_t ts, uint32_t *next_ts, const bool emerg)
{
uint32_t flow_times_out_at = f->timeout_at;
if (emerg) {
extern FlowProtoTimeout flow_timeouts_delta[FLOW_PROTO_MAX];
flow_times_out_at -= FlowGetFlowTimeoutDirect(flow_timeouts_delta, f->flow_state, f->protomap);
}
if (*next_ts == 0 || flow_times_out_at < *next_ts)
*next_ts = flow_times_out_at;
/* do the timeout check */
if ((uint64_t)flow_times_out_at >= SCTIME_SECS(ts)) {
return false;
}
return true;
}
#ifdef CAPTURE_OFFLOAD
/** \internal
* \brief check timeout of captured bypassed flow by querying capture method
*
* \param f Flow
* \param ts timestamp
* \param counters Flow timeout counters
*
* \retval false not timeout
* \retval true timeout (or not capture bypassed)
*/
static inline bool FlowBypassedTimeout(Flow *f, SCTime_t ts, FlowTimeoutCounters *counters)
{
if (f->flow_state != FLOW_STATE_CAPTURE_BYPASSED) {
return true;
}
FlowBypassInfo *fc = FlowGetStorageById(f, GetFlowBypassInfoID());
if (fc && fc->BypassUpdate) {
/* flow will be possibly updated */
uint64_t pkts_tosrc = fc->tosrcpktcnt;
uint64_t bytes_tosrc = fc->tosrcbytecnt;
uint64_t pkts_todst = fc->todstpktcnt;
uint64_t bytes_todst = fc->todstbytecnt;
bool update = fc->BypassUpdate(f, fc->bypass_data, SCTIME_SECS(ts));
if (update) {
SCLogDebug("Updated flow: %"PRId64"", FlowGetId(f));
pkts_tosrc = fc->tosrcpktcnt - pkts_tosrc;
bytes_tosrc = fc->tosrcbytecnt - bytes_tosrc;
pkts_todst = fc->todstpktcnt - pkts_todst;
bytes_todst = fc->todstbytecnt - bytes_todst;
if (f->livedev) {
SC_ATOMIC_ADD(f->livedev->bypassed,
pkts_tosrc + pkts_todst);
}
counters->bypassed_pkts += pkts_tosrc + pkts_todst;
counters->bypassed_bytes += bytes_tosrc + bytes_todst;
return false;
}
SCLogDebug("No new packet, dead flow %" PRId64 "", FlowGetId(f));
if (f->livedev) {
if (FLOW_IS_IPV4(f)) {
LiveDevSubBypassStats(f->livedev, 1, AF_INET);
} else if (FLOW_IS_IPV6(f)) {
LiveDevSubBypassStats(f->livedev, 1, AF_INET6);
}
}
counters->bypassed_count++;
}
return true;
}
#endif /* CAPTURE_OFFLOAD */
typedef struct FlowManagerTimeoutThread {
/* used to temporarily store flows that have timed out and are
* removed from the hash to reduce locking contention */
FlowQueuePrivate aside_queue;
} FlowManagerTimeoutThread;
/**
* \internal
*
* \brief Process the temporary Aside Queue
* This means that as long as a flow f is not waiting on detection
* engine to finish dealing with it, f will be put in the recycle
* queue for further processing later on.
*
* \param td FM Timeout Thread instance
* \param counters Flow Timeout counters to be updated
*
* \retval Number of flows that were recycled
*/
static uint32_t ProcessAsideQueue(FlowManagerTimeoutThread *td, FlowTimeoutCounters *counters)
{
FlowQueuePrivate recycle = { NULL, NULL, 0 };
counters->flows_aside += td->aside_queue.len;
uint32_t cnt = 0;
Flow *f;
while ((f = FlowQueuePrivateGetFromTop(&td->aside_queue)) != NULL) {
/* flow is still locked */
if (f->proto == IPPROTO_TCP &&
!(f->flags & (FLOW_TIMEOUT_REASSEMBLY_DONE | FLOW_ACTION_DROP)) &&
!FlowIsBypassed(f) && FlowNeedsReassembly(f)) {
/* Send the flow to its thread */
FlowSendToLocalThread(f);
FLOWLOCK_UNLOCK(f);
/* flow ownership is already passed to the worker thread */
counters->flows_aside_needs_work++;
continue;
}
FLOWLOCK_UNLOCK(f);
FlowQueuePrivateAppendFlow(&recycle, f);
if (recycle.len == 100) {
FlowQueueAppendPrivate(&flow_recycle_q, &recycle);
FlowWakeupFlowRecyclerThread();
}
cnt++;
}
if (recycle.len) {
FlowQueueAppendPrivate(&flow_recycle_q, &recycle);
FlowWakeupFlowRecyclerThread();
}
return cnt;
}
/**
* \internal
*
* \brief check all flows in a hash row for timing out
*
* \param f last flow in the hash row
* \param ts timestamp
* \param emergency bool indicating emergency mode
* \param counters ptr to FlowTimeoutCounters structure
*/
static void FlowManagerHashRowTimeout(FlowManagerTimeoutThread *td, Flow *f, SCTime_t ts,
int emergency, FlowTimeoutCounters *counters, uint32_t *next_ts)
{
uint32_t checked = 0;
Flow *prev_f = NULL;
do {
checked++;
/* check flow timeout based on lastts and state. Both can be
* accessed w/o Flow lock as we do have the hash row lock (so flow
* can't disappear) and flow_state is atomic. lastts can only
* be modified when we have both the flow and hash row lock */
/* timeout logic goes here */
if (FlowManagerFlowTimeout(f, ts, next_ts, emergency) == false) {
counters->flows_notimeout++;
prev_f = f;
f = f->next;
continue;
}
FLOWLOCK_WRLOCK(f);
Flow *next_flow = f->next;
#ifdef CAPTURE_OFFLOAD
/* never prune a flow that is used by a packet we
* are currently processing in one of the threads */
if (!FlowBypassedTimeout(f, ts, counters)) {
FLOWLOCK_UNLOCK(f);
prev_f = f;
f = f->next;
continue;
}
#endif
f->flow_end_flags |= FLOW_END_FLAG_TIMEOUT;
counters->flows_timeout++;
RemoveFromHash(f, prev_f);
FlowQueuePrivateAppendFlow(&td->aside_queue, f);
/* flow is still locked in the queue */
f = next_flow;
} while (f != NULL);
counters->flows_checked += checked;
if (checked > counters->rows_maxlen)
counters->rows_maxlen = checked;
}
/**
* \internal
*
* \brief Clear evicted list from Flow Manager.
* All the evicted flows are removed from the Flow bucket and added
* to the temporary Aside Queue.
*
* \param td FM timeout thread instance
* \param f head of the evicted list
*/
static void FlowManagerHashRowClearEvictedList(FlowManagerTimeoutThread *td, Flow *f)
{
do {
FLOWLOCK_WRLOCK(f);
Flow *next_flow = f->next;
f->next = NULL;
f->fb = NULL;
FlowQueuePrivateAppendFlow(&td->aside_queue, f);
/* flow is still locked in the queue */
f = next_flow;
} while (f != NULL);
}
/**
* \brief time out flows from the hash
*
* \param ts timestamp
* \param hash_min min hash index to consider
* \param hash_max max hash index to consider
* \param counters ptr to FlowTimeoutCounters structure
*
* \retval cnt number of timed out flow
*/
static uint32_t FlowTimeoutHash(FlowManagerTimeoutThread *td, SCTime_t ts, const uint32_t hash_min,
const uint32_t hash_max, FlowTimeoutCounters *counters)
{
uint32_t cnt = 0;
const int emergency = ((SC_ATOMIC_GET(flow_flags) & FLOW_EMERGENCY));
const uint32_t rows_checked = hash_max - hash_min;
uint32_t rows_skipped = 0;
uint32_t rows_empty = 0;
#if __WORDSIZE==64
#define BITS 64
#define TYPE uint64_t
#else
#define BITS 32
#define TYPE uint32_t
#endif
const uint32_t ts_secs = SCTIME_SECS(ts);
for (uint32_t idx = hash_min; idx < hash_max; idx+=BITS) {
TYPE check_bits = 0;
const uint32_t check = MIN(BITS, (hash_max - idx));
for (uint32_t i = 0; i < check; i++) {
FlowBucket *fb = &flow_hash[idx+i];
check_bits |= (TYPE)(SC_ATOMIC_LOAD_EXPLICIT(
fb->next_ts, SC_ATOMIC_MEMORY_ORDER_RELAXED) <= ts_secs)
<< (TYPE)i;
}
if (check_bits == 0)
continue;
for (uint32_t i = 0; i < check; i++) {
FlowBucket *fb = &flow_hash[idx+i];
if ((check_bits & ((TYPE)1 << (TYPE)i)) != 0 && SC_ATOMIC_GET(fb->next_ts) <= ts_secs) {
FBLOCK_LOCK(fb);
Flow *evicted = NULL;
if (fb->evicted != NULL || fb->head != NULL) {
if (fb->evicted != NULL) {
/* transfer out of bucket so we can do additional work outside
* of the bucket lock */
evicted = fb->evicted;
fb->evicted = NULL;
}
if (fb->head != NULL) {
uint32_t next_ts = 0;
FlowManagerHashRowTimeout(td, fb->head, ts, emergency, counters, &next_ts);
if (SC_ATOMIC_GET(fb->next_ts) != next_ts)
SC_ATOMIC_SET(fb->next_ts, next_ts);
}
if (fb->evicted == NULL && fb->head == NULL) {
/* row is empty */
SC_ATOMIC_SET(fb->next_ts, UINT_MAX);
}
} else {
SC_ATOMIC_SET(fb->next_ts, UINT_MAX);
rows_empty++;
}
FBLOCK_UNLOCK(fb);
/* processed evicted list */
if (evicted) {
FlowManagerHashRowClearEvictedList(td, evicted);
}
} else {
rows_skipped++;
}
}
if (td->aside_queue.len) {
cnt += ProcessAsideQueue(td, counters);
}
}
counters->rows_checked += rows_checked;
counters->rows_skipped += rows_skipped;
counters->rows_empty += rows_empty;
if (td->aside_queue.len) {
cnt += ProcessAsideQueue(td, counters);
}
counters->flows_removed += cnt;
/* coverity[missing_unlock : FALSE] */
return cnt;
}
/** \internal
*
* \brief handle timeout for a slice of hash rows
* If we wrap around we call FlowTimeoutHash twice
* \param td FM timeout thread
* \param ts timeout in seconds
* \param hash_min lower bound of the row slice
* \param hash_max upper bound of the row slice
* \param counters Flow timeout counters to be passed
* \param rows number of rows for this worker unit
* \param pos position of the beginning of row slice in the hash table
*
* \retval number of successfully timed out flows
*/
static uint32_t FlowTimeoutHashInChunks(FlowManagerTimeoutThread *td, SCTime_t ts,
const uint32_t hash_min, const uint32_t hash_max, FlowTimeoutCounters *counters,
const uint32_t rows, uint32_t *pos)
{
uint32_t start = 0;
uint32_t end = 0;
uint32_t cnt = 0;
uint32_t rows_left = rows;
again:
start = hash_min + (*pos);
if (start >= hash_max) {
start = hash_min;
}
end = start + rows_left;
if (end > hash_max) {
end = hash_max;
}
*pos = (end == hash_max) ? hash_min : end;
rows_left = rows_left - (end - start);
cnt += FlowTimeoutHash(td, ts, start, end, counters);
if (rows_left) {
goto again;
}
return cnt;
}
/**
* \internal
*
* \brief move all flows out of a hash row
*
* \param f last flow in the hash row
* \param recycle_q Flow recycle queue
* \param mode emergency or not
*
* \retval cnt number of flows removed from the hash and added to the recycle queue
*/
static uint32_t FlowManagerHashRowCleanup(Flow *f, FlowQueuePrivate *recycle_q, const int mode)
{
uint32_t cnt = 0;
do {
FLOWLOCK_WRLOCK(f);
Flow *next_flow = f->next;
/* remove from the hash */
if (mode == 0) {
RemoveFromHash(f, NULL);
} else {
FlowBucket *fb = f->fb;
fb->evicted = f->next;
f->next = NULL;
f->fb = NULL;
}
f->flow_end_flags |= FLOW_END_FLAG_SHUTDOWN;
/* no one is referring to this flow, removed from hash
* so we can unlock it and move it to the recycle queue. */
FLOWLOCK_UNLOCK(f);
FlowQueuePrivateAppendFlow(recycle_q, f);
cnt++;
f = next_flow;
} while (f != NULL);
return cnt;
}
/**
* \brief remove all flows from the hash
*
* \retval cnt number of removes out flows
*/
static uint32_t FlowCleanupHash(void)
{
FlowQueuePrivate local_queue = { NULL, NULL, 0 };
uint32_t cnt = 0;
for (uint32_t idx = 0; idx < flow_config.hash_size; idx++) {
FlowBucket *fb = &flow_hash[idx];
FBLOCK_LOCK(fb);
if (fb->head != NULL) {
/* we have a flow, or more than one */
cnt += FlowManagerHashRowCleanup(fb->head, &local_queue, 0);
}
if (fb->evicted != NULL) {
/* we have a flow, or more than one */
cnt += FlowManagerHashRowCleanup(fb->evicted, &local_queue, 1);
}
FBLOCK_UNLOCK(fb);
if (local_queue.len >= 25) {
FlowQueueAppendPrivate(&flow_recycle_q, &local_queue);
FlowWakeupFlowRecyclerThread();
}
}
DEBUG_VALIDATE_BUG_ON(local_queue.len >= 25);
FlowQueueAppendPrivate(&flow_recycle_q, &local_queue);
FlowWakeupFlowRecyclerThread();
return cnt;
}
typedef struct FlowCounters_ {
uint16_t flow_mgr_full_pass;
uint16_t flow_mgr_rows_sec;
uint16_t flow_mgr_spare;
uint16_t flow_emerg_mode_enter;
uint16_t flow_emerg_mode_over;
uint16_t flow_mgr_flows_checked;
uint16_t flow_mgr_flows_notimeout;
uint16_t flow_mgr_flows_timeout;
uint16_t flow_mgr_flows_aside;
uint16_t flow_mgr_flows_aside_needs_work;
uint16_t flow_mgr_rows_maxlen;
uint16_t flow_bypassed_cnt_clo;
uint16_t flow_bypassed_pkts;
uint16_t flow_bypassed_bytes;
uint16_t memcap_pressure;
uint16_t memcap_pressure_max;
} FlowCounters;
typedef struct FlowManagerThreadData_ {
uint32_t instance;
uint32_t min;
uint32_t max;
FlowCounters cnt;
FlowManagerTimeoutThread timeout;
uint16_t counter_defrag_timeout;
uint16_t counter_defrag_memuse;
} FlowManagerThreadData;
static void FlowCountersInit(ThreadVars *t, FlowCounters *fc)
{
fc->flow_mgr_full_pass = StatsRegisterCounter("flow.mgr.full_hash_pass", t);
fc->flow_mgr_rows_sec = StatsRegisterCounter("flow.mgr.rows_per_sec", t);
fc->flow_mgr_spare = StatsRegisterCounter("flow.spare", t);
fc->flow_emerg_mode_enter = StatsRegisterCounter("flow.emerg_mode_entered", t);
fc->flow_emerg_mode_over = StatsRegisterCounter("flow.emerg_mode_over", t);
fc->flow_mgr_rows_maxlen = StatsRegisterMaxCounter("flow.mgr.rows_maxlen", t);
fc->flow_mgr_flows_checked = StatsRegisterCounter("flow.mgr.flows_checked", t);
fc->flow_mgr_flows_notimeout = StatsRegisterCounter("flow.mgr.flows_notimeout", t);
fc->flow_mgr_flows_timeout = StatsRegisterCounter("flow.mgr.flows_timeout", t);
fc->flow_mgr_flows_aside = StatsRegisterCounter("flow.mgr.flows_evicted", t);
fc->flow_mgr_flows_aside_needs_work = StatsRegisterCounter("flow.mgr.flows_evicted_needs_work", t);
fc->flow_bypassed_cnt_clo = StatsRegisterCounter("flow_bypassed.closed", t);
fc->flow_bypassed_pkts = StatsRegisterCounter("flow_bypassed.pkts", t);
fc->flow_bypassed_bytes = StatsRegisterCounter("flow_bypassed.bytes", t);
fc->memcap_pressure = StatsRegisterCounter("memcap.pressure", t);
fc->memcap_pressure_max = StatsRegisterMaxCounter("memcap.pressure_max", t);
}
static void FlowCountersUpdate(
ThreadVars *th_v, const FlowManagerThreadData *ftd, const FlowTimeoutCounters *counters)
{
StatsAddUI64(th_v, ftd->cnt.flow_mgr_flows_checked, (uint64_t)counters->flows_checked);
StatsAddUI64(th_v, ftd->cnt.flow_mgr_flows_notimeout, (uint64_t)counters->flows_notimeout);
StatsAddUI64(th_v, ftd->cnt.flow_mgr_flows_timeout, (uint64_t)counters->flows_timeout);
StatsAddUI64(th_v, ftd->cnt.flow_mgr_flows_aside, (uint64_t)counters->flows_aside);
StatsAddUI64(th_v, ftd->cnt.flow_mgr_flows_aside_needs_work,
(uint64_t)counters->flows_aside_needs_work);
StatsAddUI64(th_v, ftd->cnt.flow_bypassed_cnt_clo, (uint64_t)counters->bypassed_count);
StatsAddUI64(th_v, ftd->cnt.flow_bypassed_pkts, (uint64_t)counters->bypassed_pkts);
StatsAddUI64(th_v, ftd->cnt.flow_bypassed_bytes, (uint64_t)counters->bypassed_bytes);
StatsSetUI64(th_v, ftd->cnt.flow_mgr_rows_maxlen, (uint64_t)counters->rows_maxlen);
}
static TmEcode FlowManagerThreadInit(ThreadVars *t, const void *initdata, void **data)
{
FlowManagerThreadData *ftd = SCCalloc(1, sizeof(FlowManagerThreadData));
if (ftd == NULL)
return TM_ECODE_FAILED;
ftd->instance = SC_ATOMIC_ADD(flowmgr_cnt, 1);
SCLogDebug("flow manager instance %u", ftd->instance);
/* set the min and max value used for hash row walking
* each thread has it's own section of the flow hash */
uint32_t range = flow_config.hash_size / flowmgr_number;
ftd->min = ftd->instance * range;
ftd->max = (ftd->instance + 1) * range;
/* last flow-manager takes on hash_size % flowmgr_number extra rows */
if ((ftd->instance + 1) == flowmgr_number) {
ftd->max = flow_config.hash_size;
}
BUG_ON(ftd->min > flow_config.hash_size || ftd->max > flow_config.hash_size);
SCLogDebug("instance %u hash range %u %u", ftd->instance, ftd->min, ftd->max);
/* pass thread data back to caller */
*data = ftd;
FlowCountersInit(t, &ftd->cnt);
ftd->counter_defrag_timeout = StatsRegisterCounter("defrag.mgr.tracker_timeout", t);
ftd->counter_defrag_memuse = StatsRegisterCounter("defrag.memuse", t);
PacketPoolInit();
return TM_ECODE_OK;
}
static TmEcode FlowManagerThreadDeinit(ThreadVars *t, void *data)
{
StreamTcpThreadCacheCleanup();
PacketPoolDestroy();
SCFree(data);
return TM_ECODE_OK;
}
/** \internal
* \brief calculate number of rows to scan and how much time to sleep
* based on the busy score `mp` (0 idle, 100 max busy).
*
* We try to to make sure we scan the hash once a second. The number size
* of the slice of the hash scanned is determined by our busy score 'mp'.
* We sleep for the remainder of the second after processing the slice,
* or at least an approximation of it.
* A minimum busy score of 10 is assumed to avoid a longer than 10 second
* full hash pass. This is to avoid burstiness in scanning when there is
* a rapid increase of the busy score, which could lead to the flow manager
* suddenly scanning a much larger slice of the hash leading to a burst
* in scan/eviction work.
*
* \param rows number of rows for the work unit
* \param mp current memcap pressure value
* \param emergency emergency mode is set or not
* \param wu_sleep holds value of sleep time per worker unit
* \param wu_rows holds value of calculated rows to be processed per second
* \param rows_sec same as wu_rows, only used for counter updates
*/
static void GetWorkUnitSizing(const uint32_t rows, const uint32_t mp, const bool emergency,
uint64_t *wu_sleep, uint32_t *wu_rows, uint32_t *rows_sec)
{
if (emergency) {
*wu_rows = rows;
*wu_sleep = 250;
return;
}
/* minimum busy score is 10 */
const uint32_t emp = MAX(mp, 10);
const uint32_t rows_per_sec = (uint32_t)((float)rows * (float)((float)emp / (float)100));
/* calc how much time we estimate the work will take, in ms. We assume
* each row takes an average of 1usec. Maxing out at 1sec. */
const uint32_t work_per_unit = MIN(rows_per_sec / 1000, 1000);
/* calc how much time we need to sleep to get to the per second cadence
* but sleeping for at least 250ms. */
const uint32_t sleep_per_unit = MAX(250, 1000 - work_per_unit);
SCLogDebug("mp %u emp %u rows %u rows_sec %u sleep %ums", mp, emp, rows, rows_per_sec,
sleep_per_unit);
*wu_sleep = sleep_per_unit;
*wu_rows = rows_per_sec;
*rows_sec = rows_per_sec;
}
/** \brief Thread that manages the flow table and times out flows.
*
* \param td ThreadVars cast to void ptr
*
* Keeps an eye on the spare list, alloc flows if needed...
*/
static TmEcode FlowManager(ThreadVars *th_v, void *thread_data)
{
FlowManagerThreadData *ftd = thread_data;
const uint32_t rows = ftd->max - ftd->min;
const bool time_is_live = TimeModeIsLive();
uint32_t emerg_over_cnt = 0;
uint64_t next_run_ms = 0;
uint32_t pos = 0;
uint32_t rows_sec = 0;
uint32_t rows_per_wu = 0;
uint64_t sleep_per_wu = 0;
bool prev_emerg = false;
uint32_t other_last_sec = 0; /**< last sec stamp when defrag etc ran */
SCTime_t ts;
/* don't start our activities until time is setup */
while (!TimeModeIsReady()) {
if (suricata_ctl_flags != 0)
return TM_ECODE_OK;
usleep(10);
}
uint32_t mp = MemcapsGetPressure() * 100;
if (ftd->instance == 0) {
StatsSetUI64(th_v, ftd->cnt.memcap_pressure, mp);
StatsSetUI64(th_v, ftd->cnt.memcap_pressure_max, mp);
}
GetWorkUnitSizing(rows, mp, false, &sleep_per_wu, &rows_per_wu, &rows_sec);
StatsSetUI64(th_v, ftd->cnt.flow_mgr_rows_sec, rows_sec);
TmThreadsSetFlag(th_v, THV_RUNNING);
while (1)
{
if (TmThreadsCheckFlag(th_v, THV_PAUSE)) {
TmThreadsSetFlag(th_v, THV_PAUSED);
TmThreadTestThreadUnPaused(th_v);
TmThreadsUnsetFlag(th_v, THV_PAUSED);
}
bool emerg = ((SC_ATOMIC_GET(flow_flags) & FLOW_EMERGENCY) != 0);
/* Get the time */
ts = TimeGet();
SCLogDebug("ts %" PRIdMAX "", (intmax_t)SCTIME_SECS(ts));
uint64_t ts_ms = SCTIME_MSECS(ts);
const bool emerge_p = (emerg && !prev_emerg);
if (emerge_p) {
next_run_ms = 0;
prev_emerg = true;
SCLogNotice("Flow emergency mode entered...");
StatsIncr(th_v, ftd->cnt.flow_emerg_mode_enter);
}
if (ts_ms >= next_run_ms) {
if (ftd->instance == 0) {
const uint32_t sq_len = FlowSpareGetPoolSize();
const uint32_t spare_perc = sq_len * 100 / MAX(flow_config.prealloc, 1);
/* see if we still have enough spare flows */
if (spare_perc < 90 || spare_perc > 110) {
FlowSparePoolUpdate(sq_len);
}
}
/* try to time out flows */
// clang-format off
FlowTimeoutCounters counters = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, };
// clang-format on
if (emerg) {
/* in emergency mode, do a full pass of the hash table */
FlowTimeoutHash(&ftd->timeout, ts, ftd->min, ftd->max, &counters);
StatsIncr(th_v, ftd->cnt.flow_mgr_full_pass);
} else {
SCLogDebug("hash %u:%u slice starting at %u with %u rows", ftd->min, ftd->max, pos,
rows_per_wu);
const uint32_t ppos = pos;
FlowTimeoutHashInChunks(
&ftd->timeout, ts, ftd->min, ftd->max, &counters, rows_per_wu, &pos);
if (ppos > pos) {
StatsIncr(th_v, ftd->cnt.flow_mgr_full_pass);
}
}
const uint32_t spare_pool_len = FlowSpareGetPoolSize();
StatsSetUI64(th_v, ftd->cnt.flow_mgr_spare, (uint64_t)spare_pool_len);
FlowCountersUpdate(th_v, ftd, &counters);
if (emerg == true) {
SCLogDebug("flow_sparse_q.len = %" PRIu32 " prealloc: %" PRIu32
"flow_spare_q status: %" PRIu32 "%% flows at the queue",
spare_pool_len, flow_config.prealloc,
spare_pool_len * 100 / MAX(flow_config.prealloc, 1));
/* only if we have pruned this "emergency_recovery" percentage
* of flows, we will unset the emergency bit */
if ((spare_pool_len * 100 / MAX(flow_config.prealloc, 1)) >
flow_config.emergency_recovery) {
emerg_over_cnt++;
} else {
emerg_over_cnt = 0;
}
if (emerg_over_cnt >= 30) {
SC_ATOMIC_AND(flow_flags, ~FLOW_EMERGENCY);
FlowTimeoutsReset();
emerg = false;
prev_emerg = false;
emerg_over_cnt = 0;
SCLogNotice("Flow emergency mode over, back to normal... unsetting"
" FLOW_EMERGENCY bit (ts.tv_sec: %" PRIuMAX ", "
"ts.tv_usec:%" PRIuMAX ") flow_spare_q status(): %" PRIu32
"%% flows at the queue",
(uintmax_t)SCTIME_SECS(ts), (uintmax_t)SCTIME_USECS(ts),
spare_pool_len * 100 / MAX(flow_config.prealloc, 1));
StatsIncr(th_v, ftd->cnt.flow_emerg_mode_over);
}
}
/* update work units */
const uint32_t pmp = mp;
mp = MemcapsGetPressure() * 100;
if (ftd->instance == 0) {
StatsSetUI64(th_v, ftd->cnt.memcap_pressure, mp);
StatsSetUI64(th_v, ftd->cnt.memcap_pressure_max, mp);
}
GetWorkUnitSizing(rows, mp, emerg, &sleep_per_wu, &rows_per_wu, &rows_sec);
if (pmp != mp) {
StatsSetUI64(th_v, ftd->cnt.flow_mgr_rows_sec, rows_sec);
}
next_run_ms = ts_ms + sleep_per_wu;
}
if (other_last_sec == 0 || other_last_sec < (uint32_t)SCTIME_SECS(ts)) {
if (ftd->instance == 0) {
StatsSetUI64(th_v, ftd->counter_defrag_memuse, DefragTrackerGetMemcap());
uint32_t defrag_cnt = DefragTimeoutHash(ts);
if (defrag_cnt) {
StatsAddUI64(th_v, ftd->counter_defrag_timeout, defrag_cnt);
}
HostTimeoutHash(ts);
IPPairTimeoutHash(ts);
HttpRangeContainersTimeoutHash(ts);
other_last_sec = (uint32_t)SCTIME_SECS(ts);
}
}
if (TmThreadsCheckFlag(th_v, THV_KILL)) {
StatsSyncCounters(th_v);
break;
}
if (emerg || !time_is_live) {
usleep(250);
} else {
struct timeval cond_tv;
gettimeofday(&cond_tv, NULL);
struct timeval add_tv;
add_tv.tv_sec = 0;
add_tv.tv_usec = (sleep_per_wu * 1000);
timeradd(&cond_tv, &add_tv, &cond_tv);
struct timespec cond_time = FROM_TIMEVAL(cond_tv);
SCCtrlMutexLock(&flow_manager_ctrl_mutex);
while (1) {
int rc = SCCtrlCondTimedwait(
&flow_manager_ctrl_cond, &flow_manager_ctrl_mutex, &cond_time);
if (rc == ETIMEDOUT || rc < 0)
break;
if (SC_ATOMIC_GET(flow_flags) & FLOW_EMERGENCY) {
break;
}
}
SCCtrlMutexUnlock(&flow_manager_ctrl_mutex);
}
SCLogDebug("woke up... %s", SC_ATOMIC_GET(flow_flags) & FLOW_EMERGENCY ? "emergency":"");
StatsSyncCountersIfSignalled(th_v);
}
return TM_ECODE_OK;
}
/** \brief spawn the flow manager thread */
void FlowManagerThreadSpawn(void)
{
intmax_t setting = 1;
(void)ConfGetInt("flow.managers", &setting);
if (setting < 1 || setting > 1024) {
FatalError("invalid flow.managers setting %" PRIdMAX, setting);
}
flowmgr_number = (uint32_t)setting;
SCLogConfig("using %u flow manager threads", flowmgr_number);
StatsRegisterGlobalCounter("flow.memuse", FlowGetMemuse);
for (uint32_t u = 0; u < flowmgr_number; u++) {
char name[TM_THREAD_NAME_MAX];
snprintf(name, sizeof(name), "%s#%02u", thread_name_flow_mgr, u+1);
ThreadVars *tv_flowmgr = TmThreadCreateMgmtThreadByName(name,
"FlowManager", 0);
BUG_ON(tv_flowmgr == NULL);
if (tv_flowmgr == NULL) {
FatalError("flow manager thread creation failed");
}
if (TmThreadSpawn(tv_flowmgr) != TM_ECODE_OK) {
FatalError("flow manager thread spawn failed");
}
}
}
typedef struct FlowRecyclerThreadData_ {
void *output_thread_data;
uint16_t counter_flows;
uint16_t counter_queue_avg;
uint16_t counter_queue_max;
uint16_t counter_flow_active;
uint16_t counter_tcp_active_sessions;
FlowEndCounters fec;
} FlowRecyclerThreadData;
static TmEcode FlowRecyclerThreadInit(ThreadVars *t, const void *initdata, void **data)
{
FlowRecyclerThreadData *ftd = SCCalloc(1, sizeof(FlowRecyclerThreadData));
if (ftd == NULL)
return TM_ECODE_FAILED;
if (OutputFlowLogThreadInit(t, NULL, &ftd->output_thread_data) != TM_ECODE_OK) {
SCLogError("initializing flow log API for thread failed");
SCFree(ftd);
return TM_ECODE_FAILED;
}
SCLogDebug("output_thread_data %p", ftd->output_thread_data);
ftd->counter_flows = StatsRegisterCounter("flow.recycler.recycled", t);
ftd->counter_queue_avg = StatsRegisterAvgCounter("flow.recycler.queue_avg", t);
ftd->counter_queue_max = StatsRegisterMaxCounter("flow.recycler.queue_max", t);
ftd->counter_flow_active = StatsRegisterCounter("flow.active", t);
ftd->counter_tcp_active_sessions = StatsRegisterCounter("tcp.active_sessions", t);
FlowEndCountersRegister(t, &ftd->fec);
*data = ftd;
return TM_ECODE_OK;
}
static TmEcode FlowRecyclerThreadDeinit(ThreadVars *t, void *data)
{
StreamTcpThreadCacheCleanup();
FlowRecyclerThreadData *ftd = (FlowRecyclerThreadData *)data;
if (ftd->output_thread_data != NULL)
OutputFlowLogThreadDeinit(t, ftd->output_thread_data);
SCFree(data);
return TM_ECODE_OK;
}
static void Recycler(ThreadVars *tv, FlowRecyclerThreadData *ftd, Flow *f)
{
FLOWLOCK_WRLOCK(f);
(void)OutputFlowLog(tv, ftd->output_thread_data, f);
FlowEndCountersUpdate(tv, &ftd->fec, f);
if (f->proto == IPPROTO_TCP && f->protoctx != NULL) {
StatsDecr(tv, ftd->counter_tcp_active_sessions);
}
StatsDecr(tv, ftd->counter_flow_active);
FlowClearMemory(f, f->protomap);
FLOWLOCK_UNLOCK(f);
}
extern uint32_t flow_spare_pool_block_size;
/** \brief Thread that manages timed out flows.
*
* \param td ThreadVars cast to void ptr
*/
static TmEcode FlowRecycler(ThreadVars *th_v, void *thread_data)
{
FlowRecyclerThreadData *ftd = (FlowRecyclerThreadData *)thread_data;
BUG_ON(ftd == NULL);
const bool time_is_live = TimeModeIsLive();
uint64_t recycled_cnt = 0;
FlowQueuePrivate ret_queue = { NULL, NULL, 0 };
TmThreadsSetFlag(th_v, THV_RUNNING);
while (1)
{
if (TmThreadsCheckFlag(th_v, THV_PAUSE)) {
TmThreadsSetFlag(th_v, THV_PAUSED);
TmThreadTestThreadUnPaused(th_v);
TmThreadsUnsetFlag(th_v, THV_PAUSED);
}
SC_ATOMIC_ADD(flowrec_busy,1);
FlowQueuePrivate list = FlowQueueExtractPrivate(&flow_recycle_q);
StatsAddUI64(th_v, ftd->counter_queue_avg, list.len);
StatsSetUI64(th_v, ftd->counter_queue_max, list.len);
const int bail = (TmThreadsCheckFlag(th_v, THV_KILL));
/* Get the time */
SCLogDebug("ts %" PRIdMAX "", (intmax_t)SCTIME_SECS(TimeGet()));
uint64_t cnt = 0;
Flow *f;
while ((f = FlowQueuePrivateGetFromTop(&list)) != NULL) {
Recycler(th_v, ftd, f);
cnt++;
/* for every full sized block, add it to the spare pool */
FlowQueuePrivateAppendFlow(&ret_queue, f);
if (ret_queue.len == flow_spare_pool_block_size) {
FlowSparePoolReturnFlows(&ret_queue);
}
}
if (ret_queue.len > 0) {
FlowSparePoolReturnFlows(&ret_queue);
}
if (cnt > 0) {
recycled_cnt += cnt;
StatsAddUI64(th_v, ftd->counter_flows, cnt);
}
SC_ATOMIC_SUB(flowrec_busy,1);
if (bail) {
break;
}
const bool emerg = (SC_ATOMIC_GET(flow_flags) & FLOW_EMERGENCY);
if (emerg || !time_is_live) {
usleep(250);
} else {
struct timeval cond_tv;
gettimeofday(&cond_tv, NULL);
cond_tv.tv_sec += 1;
struct timespec cond_time = FROM_TIMEVAL(cond_tv);
SCCtrlMutexLock(&flow_recycler_ctrl_mutex);
while (1) {
int rc = SCCtrlCondTimedwait(
&flow_recycler_ctrl_cond, &flow_recycler_ctrl_mutex, &cond_time);
if (rc == ETIMEDOUT || rc < 0) {
break;
}
if (SC_ATOMIC_GET(flow_flags) & FLOW_EMERGENCY) {
break;
}
if (SC_ATOMIC_GET(flow_recycle_q.non_empty) == true) {
break;
}
}
SCCtrlMutexUnlock(&flow_recycler_ctrl_mutex);
}
SCLogDebug("woke up...");
StatsSyncCountersIfSignalled(th_v);
}
StatsSyncCounters(th_v);
SCLogPerf("%"PRIu64" flows processed", recycled_cnt);
return TM_ECODE_OK;
}
static bool FlowRecyclerReadyToShutdown(void)
{
if (SC_ATOMIC_GET(flowrec_busy) != 0) {
return false;
}
uint32_t len = 0;
FQLOCK_LOCK(&flow_recycle_q);
len = flow_recycle_q.qlen;
FQLOCK_UNLOCK(&flow_recycle_q);
return ((len == 0));
}
/** \brief spawn the flow recycler thread */
void FlowRecyclerThreadSpawn(void)
{
intmax_t setting = 1;
(void)ConfGetInt("flow.recyclers", &setting);
if (setting < 1 || setting > 1024) {
FatalError("invalid flow.recyclers setting %" PRIdMAX, setting);
}
flowrec_number = (uint32_t)setting;
SCLogConfig("using %u flow recycler threads", flowrec_number);
for (uint32_t u = 0; u < flowrec_number; u++) {
char name[TM_THREAD_NAME_MAX];
snprintf(name, sizeof(name), "%s#%02u", thread_name_flow_rec, u+1);
ThreadVars *tv_flowrec = TmThreadCreateMgmtThreadByName(name,
"FlowRecycler", 0);
if (tv_flowrec == NULL) {
FatalError("flow recycler thread creation failed");
}
if (TmThreadSpawn(tv_flowrec) != TM_ECODE_OK) {
FatalError("flow recycler thread spawn failed");
}
}
}
/**
* \brief Used to disable flow recycler thread(s).
*
* \note this should only be called when the flow manager is already gone
*
* \todo Kinda hackish since it uses the tv name to identify flow recycler
* thread. We need an all weather identification scheme.
*/
void FlowDisableFlowRecyclerThread(void)
{
/* move all flows still in the hash to the recycler queue */
#ifndef DEBUG
(void)FlowCleanupHash();
#else
uint32_t flows = FlowCleanupHash();
SCLogDebug("flows to progress: %u", flows);
#endif
/* make sure all flows are processed */
do {
FlowWakeupFlowRecyclerThread();
usleep(10);
} while (FlowRecyclerReadyToShutdown() == false);
SCMutexLock(&tv_root_lock);
/* flow recycler thread(s) is/are a part of mgmt threads */
for (ThreadVars *tv = tv_root[TVT_MGMT]; tv != NULL; tv = tv->next) {
if (strncasecmp(tv->name, thread_name_flow_rec,
strlen(thread_name_flow_rec)) == 0)
{
TmThreadsSetFlag(tv, THV_KILL);
}
}
SCMutexUnlock(&tv_root_lock);
struct timeval start_ts;
struct timeval cur_ts;
gettimeofday(&start_ts, NULL);
again:
gettimeofday(&cur_ts, NULL);
if ((cur_ts.tv_sec - start_ts.tv_sec) > 60) {
FatalError("unable to get all flow recycler "
"threads to shutdown in time");
}
SCMutexLock(&tv_root_lock);
for (ThreadVars *tv = tv_root[TVT_MGMT]; tv != NULL; tv = tv->next) {
if (strncasecmp(tv->name, thread_name_flow_rec,
strlen(thread_name_flow_rec)) == 0)
{
if (!TmThreadsCheckFlag(tv, THV_RUNNING_DONE)) {
SCMutexUnlock(&tv_root_lock);
FlowWakeupFlowRecyclerThread();
/* sleep outside lock */
SleepMsec(1);
goto again;
}
}
}
SCMutexUnlock(&tv_root_lock);
/* reset count, so we can kill and respawn (unix socket) */
SC_ATOMIC_SET(flowrec_cnt, 0);
}
void TmModuleFlowManagerRegister (void)
{
tmm_modules[TMM_FLOWMANAGER].name = "FlowManager";
tmm_modules[TMM_FLOWMANAGER].ThreadInit = FlowManagerThreadInit;
tmm_modules[TMM_FLOWMANAGER].ThreadDeinit = FlowManagerThreadDeinit;
tmm_modules[TMM_FLOWMANAGER].Management = FlowManager;
tmm_modules[TMM_FLOWMANAGER].cap_flags = 0;
tmm_modules[TMM_FLOWMANAGER].flags = TM_FLAG_MANAGEMENT_TM;
SCLogDebug("%s registered", tmm_modules[TMM_FLOWMANAGER].name);
SC_ATOMIC_INIT(flowmgr_cnt);
SC_ATOMIC_INITPTR(flow_timeouts);
}
void TmModuleFlowRecyclerRegister (void)
{
tmm_modules[TMM_FLOWRECYCLER].name = "FlowRecycler";
tmm_modules[TMM_FLOWRECYCLER].ThreadInit = FlowRecyclerThreadInit;
tmm_modules[TMM_FLOWRECYCLER].ThreadDeinit = FlowRecyclerThreadDeinit;
tmm_modules[TMM_FLOWRECYCLER].Management = FlowRecycler;
tmm_modules[TMM_FLOWRECYCLER].cap_flags = 0;
tmm_modules[TMM_FLOWRECYCLER].flags = TM_FLAG_MANAGEMENT_TM;
SCLogDebug("%s registered", tmm_modules[TMM_FLOWRECYCLER].name);
SC_ATOMIC_INIT(flowrec_cnt);
SC_ATOMIC_INIT(flowrec_busy);
}