AF_PACKET is not setting the engine mode to IPS when some
interfaces are peered and use IPS mode. This is due to the
fact, it is possible to peer 2 interfaces and run an IPS on
them and have a third one that is running in normal IDS mode.
In fact this choice is the bad one as unwanted side effect is
that there is no drop log and that stream inline is not used.
To fix that, this patch puts suricata in IPS mode as soon as
there is two interfaces in IPS mode. And it displays a error
message to warn user that the accuracy of detection on IDS only
interfaces will be low.
When using AMATCH, continue detection would fail if the tx part
had already run. This lead to start detection rerunning, causing
multiple alerts for the same issue.
As there is no inspection engine for request_line, the sigmatch was
added to the AMATCH list. However, no AppLayerMatch function for
lua scripts was defined.
This patch defines a AppLayerMatch function.
Bug #1273.
Add -c flag to run command given as argument and return the raw
JSON result. For example, it is possible to run something like.
$ suricatasc -c "iface-stat eth0"
{'message': {'pkts': 17838352, 'drop': 0, 'invalid-checksums': 1}, 'return': 'OK'}
I found three somewhat serious IPv6 address bugs within the Suricata 2.0.x source code. Two are in the source module "detect-engine-address.c", and the third is in "util-radix-tree.c".
The first bug occurs within the function DetectAddressParse2(). When parsing an address string and a negated block is encountered (such as when parsing !$HOME_NET, for example), any corresponding IPv6 addresses were not getting added to the Group Heads in the DetectAddressList. Only IPv4 addresses were being added.
I discovered another bug related to IPv6 address ranges in the Signature Match Address Array comparison code for IPv6 addresses. The function DetectAddressMatchIPv6() walks a signature's source or destination match address list comparing each to the current packet's corresponding address value. The match address list consists of value pairs representing a lower and upper IP address range. If the packet's address is within that range (including equal to either the lower or upper bound), then a signature match flag is returned.
The original test of each signature match address to the packet was performed using a set of four compounded AND comparisons looking at each of the four 32-bit blocks that comprise an IPv6 address. The problem with the old comparison is that if ANY of the four 32-bit blocks failed the test, then a "no-match" was returned. This is incorrect. If one or more of the more significant 32-bit blocks met the condition, then it is a match no matter if some of the less significant 32-bit blocks did not meet the condition. Consider this example where Packet represents the packet address being checked, and Target represents the upper bound of a match address pair. We are testing if Packet is less than Target.
Packet -- 2001:0470 : 1f07:00e2 : 1988:01f1 : d468:27ab
Target -- 2001:0470 : 1f07:00e2 : a48c:2e52 : d121:101e
In this example the Packet's address is less than the target and it should give a match. However, the old code would compare each 32-bit block (shown spaced out above for clarity) and logically AND the result with the next least significant block comparison. If any of the four blocks failed the comparison, that kicked out the whole address. The flaw is illustrated above. The first two blocks are 2001:0470 and 1f07:00e2 and yield TRUE; the next less significant block is 1988:01f1 and a48c:2e52, and also yields TRUE (that is, Packet is less than Target); but the last block compare is FALSE (d468:27ab is not less than d121:101e). That last block is the least significant block, though, so its FALSE determination should not invalidate a TRUE from any of the more significant blocks. However, in the previous code using the compound logical AND block, that last least significant block would invalidate the tests done with the more significant blocks.
The other bug I found for IPv6 occurs when trying to parse and insert an IPv6 address into a Radix Tree using the function SCRadixAddKeyIPV6String(). The test for min and max values for an IPv6 CIDR mask incorrectly tests the upper limit as 32 when it should be 128 for an IPv6 address. I think this perhaps is an old copy-paste error if the IPv6 version of this function was initially copied from the corresponding IPv4 version directly above it in the code. Without this patch, the function will return null when you attempt to add an IPv6 network whose CIDR mask is larger than 32 (for example, the popular /64 mask will cause the function to return the NULL error condition).
(amended by Victor Julien)
When using the inspection engines, track the current tx_id in the
thread storage the detect thread uses. As 0 is a valid tx_id, add
a simple bool that indicates if the tx_id field is set.
Allow use of the Flow Logging API through Lua scripts.
Minimal script:
function init (args)
local needs = {}
needs["type"] = "flow"
return needs
end
function setup (args)
end
function log(args)
startts = SCFlowTimeString()
ipver, srcip, dstip, proto, sp, dp = SCFlowTuple()
print ("Flow IPv" .. ipver .. " src " .. srcip .. " dst " .. dstip ..
" proto " .. proto .. " sp " .. sp .. " dp " .. dp)
end
function deinit (args)
end
Add SCStreamingBuffer lua function to retrieve the data passed
to the script per streaming API invocation.
Example:
function log(args)
data = SCStreamingBuffer()
hex_dump(data)
end
Make normalized body data available to the script through
HttpGetRequestBody and HttpGetResponseBody.
There no guarantees that all of the body will be availble.
Example:
function log(args)
a, o, e = HttpGetResponseBody();
--print("offset " .. o .. " end " .. e)
for n, v in ipairs(a) do
print(v)
end
end
Get the host from libhtp's tx->request_hostname, which can either be
the host portion of the url or the host portion of the Host header.
Example:
http_host = HttpGetRequestHost()
if http_host == nil then
http_host = "<hostname unknown>"
end
SCFlowAppLayerProto: get alproto as string from the flow. If alproto
is not (yet) known, it returns "unknown".
function log(args)
alproto = SCFlowAppLayerProto()
if alproto ~= nil then
print (alproto)
end
end
A new callback to give access to thread id, name and group name:
SCThreadInfo. It gives: tid (integer), tname (string), tgroup (string)
function log(args)
tid, tname, tgroup = SCThreadInfo()
SCFlowTimeString: returns string form of start time of a flow
Example:
function log(args)
startts = SCFlowTimeString()
ts = SCPacketTimeString()
if ts == startts then
print("new flow")
end
Add SCPacketTimeString to get the packets time string in the format:
11/24/2009-18:57:25.179869
Example use:
function log(args)
ts = SCPacketTimeString()
SCRuleIds(): returns sid, rev, gid:
function log(args)
sid, rev, gid = SCRuleIds()
SCRuleMsg(): returns msg
function log(args)
msg = SCRuleMsg()
SCRuleClass(): returns class msg and prio:
function log(args)
class, prio = SCRuleClass()
if class == nil then
class = "unknown"
end
Add flow store and retrieval wrappers for accessing the flow through
Lua's lightuserdata method.
The flow functions store/retrieve a lock hint as well.
If the script needing a packet doesn't specify a filter, it will
be run against all packets. This patch adds the support for this
mode. It is a packet logger with a condition function that always
returns true.
Add a lua callback for getting Suricata's log path, so that lua scripts
can easily get the logging directory Suricata uses.
Update the Setup logic to register callbacks before the scripts 'setup'
is called.
Example:
name = "fast_lua.log"
function setup (args)
filename = SCLogPath() .. "/" .. name
file = assert(io.open(filename, "a"))
end