For these 2 cases:
1. Missing SYN:
-> syn <= missing
<- syn/ack
-> ack
-> data
2. Missing SYN and 3whs ACK:
-> syn <= missing
<- syn/ack
-> ack <= missing
-> data
Fix session pickup. The next_win settings weren't correctly set, so that
packets were rejected.
Bug 1190.
If 3whs SYN/ACK and ACK are missing we can still pick up the session if
in async-oneside mode.
-> syn
<- syn/ack <= missing
-> ack <= missing
-> data
Bug 1190.
ACK packets completing a valid FIN shutdown could be flagged as
'bad window update' if they would shrink the window.
This patch detects this case before doing the bad window update
check.
If the 3whs ACK and some data after this is lost, we would get stuck
in the 'SYN_RECV' state, where from there each packet might be
considered invalid.
This patch improves the handling of this case.
Stream pseudo packets are taken from the packet pool, which can be empty.
In this case a pseudo packet will not be created and processed.
This patch adds a counter "tcp.pseudo_failed" to track this.
Reported in bug 1238 is an issue where stream reassembly can be
disrupted.
A packet that was in-window, but otherwise unexpected set the
window to a really low value, causing the next *expected* packet
to be considered out of window. This lead to missing data in the
stream reassembly.
The packet was unexpected in various ways:
- it would ack unseen traffic
- it's sequence number would not match the expected next_seq
- set a really low window, while not being a proper window update
Detection however, it greatly hampered by the fact that in case of
packet loss, quite similar packets come in. Alerting in this case
is unwanted. Ignoring/skipping packets in this case as well.
The logic used in this patch is as follows. If:
- the packet is not a window update AND
- packet seq > next_seq AND
- packet acq > next_seq (packet acks unseen data) AND
- packet shrinks window more than it's own data size
THEN set event and skip the packet in the stream engine.
So in case of a segment with no data, any window shrinking is rejected.
Bug #1238.
For netflow logging track TCP flags per stream direction. As the struct
had no more space left without expanding it, the flags and wscale
fields are now compressed.
Implement StreamTcpSetDisableRawReassemblyFlag() which stops raw
reassembly for _NEW_ segments in a stream direction.
It is used only by TLS/SSL now, to flag the streams as encrypted.
Existing segments will still be reassembled and inspected, while
new segments won't be. This allows for pattern based inspection
of the TLS handshake.
Like is the case with completely disabled 'raw' reassembly, the
logic is that the segments are flagged as completed for 'raw' right
away. So they are not considered in raw reassembly anymore.
As no new segments will be considered, the chunk limit check will
return true on the next call.
If midstream is enabled and the first packet is the syn/ack packet from
the 3whs, initialized server.last_ack to the packets seq.
This fixes tracking the session.
Instead of error phrone externs with macro's, use functions with a local
static enum var instead.
- EngineModeIsIPS(): in IPS mode
- EngineModeIsIDS(): in IDS mode
To set the modes:
- EngineModeSetIDS(): IDS mode (default)
- EngineModeSetIPS(): IPS mode
Bug #1177.
To be able to register counters from AppLayerGetCtxThread, the
ThreadVars pointer needs to be available in it and thus in it's
callers:
- AppLayerGetCtxThread
- DecodeThreadVarsAlloc
- StreamTcpReassembleInitThreadCtx
StreamMsgs would be stored in a per thread queue before being
attached to the tcp ssn. This is unnecessary, so this patch
removes this queue and puts the smsgs into the ssn directly.
Large patch as it affects a lot of tests.
StreamMsg' flow reference was used mostly to make sure a flow would
not get removed from the hash before inspection. For this it needed
to reference the flow use_cnt reference counter. Nowadays we have
more advanced flow timeout handling. This will make sure that if
there still are pending smsgs' in a flow, these will still be
processed.
Preparation for removing flow pointer from StreamMsg. Instead of
getting the ssn indirectly through StreamMsg->flow, we pass it
directly as all callers have it already.
This patch adds a memory counter for HTP memory usage. As
there is no thread variables available in application layer
the counter has been added to the TCP reassembly thread.
app-layer.[ch], app-layer-detect-proto.[ch] and app-layer-parser.[ch].
Things addressed in this commit:
- Brings out a proper separation between protocol detection phase and the
parser phase.
- The dns app layer now is registered such that we don't use "dnstcp" and
"dnsudp" in the rules. A user who previously wrote a rule like this -
"alert dnstcp....." or
"alert dnsudp....."
would now have to use,
alert dns (ipproto:tcp;) or
alert udp (app-layer-protocol:dns;) or
alert ip (ipproto:udp; app-layer-protocol:dns;)
The same rules extend to other another such protocol, dcerpc.
- The app layer parser api now takes in the ipproto while registering
callbacks.
- The app inspection/detection engine also takes an ipproto.
- All app layer parser functions now take direction as STREAM_TOSERVER or
STREAM_TOCLIENT, as opposed to 0 or 1, which was taken by some of the
functions.
- FlowInitialize() and FlowRecycle() now resets proto to 0. This is
needed by unittests, which would try to clean the flow, and that would
call the api, AppLayerParserCleanupParserState(), which would try to
clean the app state, but the app layer now needs an ipproto to figure
out which api to internally call to clean the state, and if the ipproto
is 0, it would return without trying to clean the state.
- A lot of unittests are now updated where if they are using a flow and
they need to use the app layer, we would set a flow ipproto.
- The "app-layer" section in the yaml conf has also been updated as well.
The uint8_t *pkt in the Packet structure always points to the memory
immediately following the Packet structure. It is better to simply
calculate that value every time than store the 8 byte pointer.
Raw reassembly is used only by the detection engine. For users only
caring about logging it's a significant overhead, both in cpu and
memory usage.
The option is called 'raw' and lives under the stream.reassembly
options.
stream:
memcap: 32mb
checksum-validation: yes # reject wrong csums
inline: auto # auto will use inline mode in IPS mode, yes or no set it statically
reassembly:
memcap: 64mb
depth: 1mb # reassemble 1mb into a stream
toserver-chunk-size: 2560
toclient-chunk-size: 2560
randomize-chunk-size: yes
#randomize-chunk-range: 10
raw: false # <- new option
If a session only has data in one direction, like ftp data sessions,
protocol detection will only run in one direction. This led to a
situation where reassembly would hold all the segments as proto
detection was never flagged as complete.
This patch introduces a limit for protocol detection in this case.
If the limit is reached, detection will give up.
This patch adds support for checksum-checks in the pcap-file running
mode. This is the same functionnality as the one already existing for
live interface.
It can be setup in the YAML:
pcap-file:
checksum-checks: auto
A message is displayed for small pcap to warn that invalid checksum
rate is big on the pcap file and that checksum-check could
be set to no.
Keep a separate checksum for IPV4, since a packet can have both an IPV4
checksum and a TCPV4 checksum, or IPV4 and UDPV4 checksum.
This will allow future sharing of more values.
Use PACKET_RESET_CHECKSUMS() in Unit Tests in place of setting the
individual checksum values.
This patch is a result of applying the following coccinelle
transformation to suricata sources:
@istested@
identifier x;
statement S1;
identifier func =~ "(SCMalloc|SCStrdup|SCCalloc|SCMallocAligned|SCRealloc)";
@@
x = func(...)
... when != x
- if (x == NULL) S1
+ if (unlikely(x == NULL)) S1
In case of recursive call to protocol detection from within protocol
detection, and the recursively invoked stream still hasn't been ack'ed
yet, protocol detection doesn't take place. In such cases we will end up
still calling the app layer with the wrong direction data. Introduce a
check to not call app layer with wrong direction data.
When sockets are re-used reset all relevant vars correctly.
This commit fixes a bug where we were not reseting app proto detection
vars.
While fixing #989, we discovered some other bugs which have also been
fixed, or rather some features which are now updated. One of the feature
update being if we recieve wrong direction data first, we don't reset the
protocol values for the flow. We let the flow retain the detected
values.
Unittests have been modified to accomodate the above change.