In case of autofp (or more general, when flow and stream engine
run in different threads) the flow engine should not trigger a flow
reuse as this can lead to race conditions between the flow and the
stream engine.
In such cases, the flow engine can be far ahead of the stream engine
as packets are in a queue between the threads.
Observed:
Flow engine tags packet 10 as start of new flow. Flow is tagged as
'reused'.
Stream engine evaluates packet 5 which belongs to the old flow. It
rejects the flow as it's tagged 'reused'. Attaches packet 5 to the
new flow which is wrong.
Solution:
This patch connects the flow engines handling of reuse cases to
the runmode. It hooks into the RunmodeSetFlowStreamAsync() call to
notify the flow engine that it shouldn't handle the reuse.
Most flows are marked for clean up by the flow manager, which then
passes them to the recycler. The recycler logs and cleans up. However,
under resource stress conditions, the packet threads can recycle
existing flow directly. So here the recycler has no role to play, as
the flow is immediately used.
For this reason, the packet threads need to be able to invoke the
flow logger directly.
The flow logging thread ctx will stored in the DecodeThreadVars
stucture. Therefore, this patch makes the DecodeThreadVars an argument
to FlowHandlePacket.
By moving FlowReference() out of FlowGetFlowFromHash() and into the one
function that calls it, all the flow functions take const Packet * instead
of Packet *.
Major redesign of the flow engine. Remove the flow queues that turned
out to be major choke points when using many threads. Flow manager now
walks the hash table directly. Simplify the way we get a new flow in
case of emergency.