You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
fluffychat/lib/pangea/repo/igc_repo.dart

120 lines
3.4 KiB
Dart

import 'dart:convert';
import 'package:fluffychat/pangea/config/environment.dart';
import 'package:fluffychat/pangea/controllers/language_detection_controller.dart';
import 'package:fluffychat/pangea/models/language_detection_model.dart';
import 'package:fluffychat/pangea/models/lemma.dart';
import 'package:fluffychat/pangea/models/pangea_match_model.dart';
import 'package:fluffychat/pangea/models/pangea_token_model.dart';
import 'package:fluffychat/pangea/repo/span_data_repo.dart';
import 'package:http/http.dart';
import '../constants/model_keys.dart';
import '../models/igc_text_data_model.dart';
import '../network/requests.dart';
import '../network/urls.dart';
class IgcRepo {
static Future<IGCTextData> getIGC(
String? accessToken, {
required IGCRequestBody igcRequest,
}) async {
final Requests req = Requests(
accessToken: accessToken,
choreoApiKey: Environment.choreoApiKey,
);
final Response res = await req.post(
url: PApiUrls.igcLite,
body: igcRequest.toJson(),
);
final Map<String, dynamic> json =
jsonDecode(utf8.decode(res.bodyBytes).toString());
final IGCTextData response = IGCTextData.fromJson(json);
return response;
}
static Future<IGCTextData> getMockData() async {
await Future.delayed(const Duration(seconds: 2));
final IGCTextData igcTextData = IGCTextData(
detections: LanguageDetectionResponse(
detections: [LanguageDetection(langCode: "en", confidence: 0.99)],
fullText: "This be a sample text",
),
tokens: [
PangeaToken(
text: PangeaTokenText(content: "This", offset: 0, length: 4),
lemma: Lemma(form: "This", text: "this", saveVocab: true),
pos: "DET",
morph: {},
),
PangeaToken(
text: PangeaTokenText(content: "be", offset: 5, length: 2),
lemma: Lemma(form: "be", text: "be", saveVocab: true),
pos: "VERB",
morph: {},
),
PangeaToken(
text: PangeaTokenText(content: "a", offset: 8, length: 1),
lemma: Lemma(form: "a", text: "a", saveVocab: true),
pos: "DET",
morph: {},
),
PangeaToken(
text: PangeaTokenText(content: "sample", offset: 10, length: 6),
lemma: Lemma(form: "sample", text: "sample", saveVocab: true),
pos: "NOUN",
morph: {},
),
PangeaToken(
text: PangeaTokenText(content: "text", offset: 17, length: 4),
lemma: Lemma(form: "text", text: "text", saveVocab: true),
pos: "NOUN",
morph: {},
),
],
matches: [
PangeaMatch(
match: spanDataRepomockSpan,
status: PangeaMatchStatus.open,
),
],
originalInput: "This be a sample text",
fullTextCorrection: "This is a sample text",
userL1: "es",
userL2: "en",
enableIT: true,
enableIGC: true,
);
return igcTextData;
}
}
class IGCRequestBody {
String fullText;
String userL1;
String userL2;
bool enableIT;
bool enableIGC;
IGCRequestBody({
required this.fullText,
required this.userL1,
required this.userL2,
required this.enableIGC,
required this.enableIT,
});
Map<String, dynamic> toJson() => {
ModelKey.fullText: fullText,
ModelKey.userL1: userL1,
ModelKey.userL2: userL2,
"enable_it": enableIT,
"enable_igc": enableIGC,
};
}