import 'dart:developer'; import 'package:fluffychat/pangea/models/pangea_match_model.dart'; import 'package:fluffychat/pangea/models/pangea_token_model.dart'; import 'package:fluffychat/pangea/models/span_card_model.dart'; import 'package:fluffychat/pangea/utils/error_handler.dart'; import 'package:flutter/foundation.dart'; import 'package:flutter/gestures.dart'; import 'package:flutter/material.dart'; import 'package:matrix/matrix.dart'; // import 'package:language_tool/language_tool.dart'; import 'package:sentry_flutter/sentry_flutter.dart'; import '../constants/model_keys.dart'; import '../utils/overlay.dart'; import '../widgets/igc/span_card.dart'; import '../widgets/igc/word_data_card.dart'; import 'language_detection_model.dart'; class IGCTextData { List detections; String originalInput; String? fullTextCorrection; List tokens; List matches; String userL1; String userL2; bool enableIT; bool enableIGC; bool loading = false; IGCTextData({ required this.detections, required this.originalInput, required this.fullTextCorrection, required this.tokens, required this.matches, required this.userL1, required this.userL2, required this.enableIT, required this.enableIGC, }); factory IGCTextData.fromJson(Map json) { return IGCTextData( tokens: (json[_tokensKey] as Iterable) .map( (e) => PangeaToken.fromJson(e as Map), ) .toList() .cast(), matches: json[_matchesKey] != null ? (json[_matchesKey] as Iterable) .map( (e) { return PangeaMatch.fromJson(e as Map); }, ) .toList() .cast() : [], detections: (json[_detectionsKey] as Iterable) .map( (e) => LanguageDetection.fromJson(e as Map), ) .toList() .cast(), originalInput: json["original_input"], fullTextCorrection: json["full_text_correction"], userL1: json[ModelKey.userL1], userL2: json[ModelKey.userL2], enableIT: json["enable_it"], enableIGC: json["enable_igc"], ); } static const String _tokensKey = "tokens"; static const String _matchesKey = "matches"; static const String _detectionsKey = "detections"; Map toJson() => { _detectionsKey: detections.map((e) => e.toJson()).toList(), "original_input": originalInput, "full_text_correction": fullTextCorrection, _tokensKey: tokens.map((e) => e.toJson()).toList(), _matchesKey: matches.map((e) => e.toJson()).toList(), ModelKey.userL1: userL1, ModelKey.userL2: userL2, "enable_it": enableIT, "enable_igc": enableIGC, }; // reconstruct fullText based on accepted match //update offsets in existing matches to reflect the change //if existing matches overlap with the accepted one, remove them?? void acceptReplacement( int matchIndex, int choiceIndex, ) async { //should be already added to choreoRecord //TODO - that should be done in the same function to avoid error potential final PangeaMatch pangeaMatch = matches[matchIndex]; if (pangeaMatch.match.choices == null) { debugger(when: kDebugMode); ErrorHandler.logError( m: "pangeaMatch.match.choices is null in acceptReplacement", ); return; } final String replacement = pangeaMatch.match.choices![choiceIndex].value; originalInput = originalInput.replaceRange( pangeaMatch.match.offset, pangeaMatch.match.offset + pangeaMatch.match.length, replacement, ); //update offsets in existing matches to reflect the change //Question - remove matches that overlap with the accepted one? // see case of "quiero ver un fix" matches.removeAt(matchIndex); for (final match in matches) { final matchOffset = match.match.offset; final matchLength = match.match.length; match.match.fullText = originalInput; if (match.match.offset > pangeaMatch.match.offset) { match.match.offset += replacement.length - pangeaMatch.match.length; } } //quiero ver un fix //match offset zero and length of full text or 16 //fix is repplaced by arreglo and now the length needs to be 20 //if the accepted span is within another span, then the length of that span needs //needs to be increased by the difference between the new and old length //if the two spans are overlapping, what happens? //------ // ----- -> --- //if there is any overlap, maybe igc needs to run again? } void removeMatchByOffset(int offset) { final int index = getTopMatchIndexForOffset(offset); if (index != -1) { matches.removeAt(index); } } int tokenIndexByOffset( cursorOffset, ) => tokens.indexWhere( (token) => token.text.offset <= cursorOffset && cursorOffset <= token.text.offset + token.text.length, ); List getMatchIndicesForToken(PangeaToken token) => matchIndicesByOffset(token.text.offset); int getTopMatchIndexForOffset(int offset) { final List matchesForToken = matchIndicesByOffset(offset); if (matchesForToken.isEmpty) return -1; for (final matchIndex in matchesForToken) { final match = matches[matchIndex]; if (enableIT) { if (match.isITStart || match.isl1SpanMatch) { return matchIndex; } } if (enableIGC) { if (match.isGrammarMatch) { return matchIndex; } } } return -1; } PangeaMatch? getTopMatchForToken(PangeaToken token) { final int topMatchIndex = getTopMatchIndexForOffset(token.text.offset); if (topMatchIndex == -1) return null; return matches[topMatchIndex]; } List matchIndicesByOffset(int offset) { final List matchesForOffset = []; for (final (index, match) in matches.indexed) { if (match.isOffsetInMatchSpan(offset)) { matchesForOffset.add(index); } } return matchesForOffset; } int getAfterTokenSpacingByIndex( int tokenIndex, ) { final int endOfToken = tokens[tokenIndex].text.offset + tokens[tokenIndex].text.length; if (tokenIndex + 1 < tokens.length) { final spaceBetween = tokens[tokenIndex + 1].text.offset - endOfToken; if (spaceBetween < 0) { Sentry.addBreadcrumb( Breadcrumb.fromJson( { "fullText": originalInput, "tokens": tokens.map((e) => e.toJson()).toString() }, ), ); ErrorHandler.logError( m: "wierd token lengths for ${tokens[tokenIndex].text.content} and ${tokens[tokenIndex + 1].text.content}", ); return 0; } return spaceBetween; } else { return originalInput.length - endOfToken; } } static TextStyle underlineStyle(Color color) => TextStyle( decoration: TextDecoration.underline, decorationColor: color, decorationThickness: 5, ); static const _hasDefinitionStyle = TextStyle( decoration: TextDecoration.underline, decorationColor: Color.fromARGB(148, 83, 97, 255), decorationThickness: 4, ); static TextStyle hasDefinitionStyle(TextStyle? existingStyle) => existingStyle?.merge(_hasDefinitionStyle) ?? _hasDefinitionStyle; //PTODO - handle multitoken spans List constructTokenSpan({ required BuildContext context, TextStyle? defaultStyle, required SpanCardModel? spanCardModel, required bool showTokens, required bool handleClick, required String transformTargetId, required Room room, }) { final List items = []; if (loading) { return [ TextSpan( text: originalInput, style: defaultStyle, ), ]; } // or could make big strings for non-match text and therefore make less textspans. // would that be more performant? tokens.asMap().forEach( (index, token) { final PangeaMatch? topTokenMatch = getTopMatchForToken( tokens[index], ); // if (index == 3) { // debugPrint( // "constructing span with topTokenMatch: ${topTokenMatch?.match.rule.id}"); // } final Widget cardToShow = spanCardModel != null && topTokenMatch != null ? SpanCard( scm: spanCardModel, ) : WordDataCard( fullText: originalInput, fullTextLang: detections.first.langCode, word: token.text.content, wordLang: detections.first.langCode, hasInfo: token.hasInfo, room: room, ); final TextStyle tokenStyle = topTokenMatch != null ? topTokenMatch.textStyle(defaultStyle) : hasDefinitionStyle(defaultStyle); items.add(TextSpan( text: token.text.content, style: tokenStyle, recognizer: handleClick ? (TapGestureRecognizer() ..onTapDown = (details) => OverlayUtil.showPositionedCard( context: context, cardToShow: cardToShow, cardSize: topTokenMatch?.isITStart ?? false ? const Size(350, 220) : const Size(350, 400), transformTargetId: transformTargetId, )) : null, )); final int charBetween = getAfterTokenSpacingByIndex( index, ); if (charBetween > 0) { items.add( TextSpan( text: " " * charBetween, style: topTokenMatch != null && token.text.offset + token.text.length + charBetween <= topTokenMatch.match.offset + topTokenMatch.match.length ? tokenStyle : defaultStyle, ), ); } }, ); return items; } }