You cannot select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
	
	
		
			383 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			ReStructuredText
		
	
			
		
		
	
	
			383 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			ReStructuredText
		
	
Schema validation just got Pythonic
 | 
						|
===============================================================================
 | 
						|
 | 
						|
**schema** is a library for validating Python data structures, such as those
 | 
						|
obtained from config-files, forms, external services or command-line
 | 
						|
parsing, converted from JSON/YAML (or something else) to Python data-types.
 | 
						|
 | 
						|
 | 
						|
.. image:: https://secure.travis-ci.org/keleshev/schema.png?branch=master
 | 
						|
    :target: https://travis-ci.org/keleshev/schema
 | 
						|
 | 
						|
.. image:: https://img.shields.io/codecov/c/github/keleshev/schema.svg
 | 
						|
    :target: http://codecov.io/github/keleshev/schema
 | 
						|
 | 
						|
Example
 | 
						|
----------------------------------------------------------------------------
 | 
						|
 | 
						|
Here is a quick example to get a feeling of **schema**, validating a list of
 | 
						|
entries with personal information:
 | 
						|
 | 
						|
.. code:: python
 | 
						|
 | 
						|
    >>> from schema import Schema, And, Use, Optional
 | 
						|
 | 
						|
    >>> schema = Schema([{'name': And(str, len),
 | 
						|
    ...                   'age':  And(Use(int), lambda n: 18 <= n <= 99),
 | 
						|
    ...                   Optional('sex'): And(str, Use(str.lower),
 | 
						|
    ...                                        lambda s: s in ('male', 'female'))}])
 | 
						|
 | 
						|
    >>> data = [{'name': 'Sue', 'age': '28', 'sex': 'FEMALE'},
 | 
						|
    ...         {'name': 'Sam', 'age': '42'},
 | 
						|
    ...         {'name': 'Sacha', 'age': '20', 'sex': 'Male'}]
 | 
						|
 | 
						|
    >>> validated = schema.validate(data)
 | 
						|
 | 
						|
    >>> assert validated == [{'name': 'Sue', 'age': 28, 'sex': 'female'},
 | 
						|
    ...                      {'name': 'Sam', 'age': 42},
 | 
						|
    ...                      {'name': 'Sacha', 'age' : 20, 'sex': 'male'}]
 | 
						|
 | 
						|
 | 
						|
If data is valid, ``Schema.validate`` will return the validated data
 | 
						|
(optionally converted with `Use` calls, see below).
 | 
						|
 | 
						|
If data is invalid, ``Schema`` will raise ``SchemaError`` exception.
 | 
						|
 | 
						|
 | 
						|
Installation
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
 | 
						|
Use `pip <http://pip-installer.org>`_ or easy_install::
 | 
						|
 | 
						|
    pip install schema
 | 
						|
 | 
						|
Alternatively, you can just drop ``schema.py`` file into your project—it is
 | 
						|
self-contained.
 | 
						|
 | 
						|
- **schema** is tested with Python 2.6, 2.7, 3.2, 3.3 and PyPy.
 | 
						|
- **schema** follows `semantic versioning <http://semver.org>`_.
 | 
						|
 | 
						|
How ``Schema`` validates data
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
 | 
						|
Types
 | 
						|
~~~~~
 | 
						|
 | 
						|
If ``Schema(...)`` encounters a type (such as ``int``, ``str``, ``object``,
 | 
						|
etc.), it will check if the corresponding piece of data is an instance of that type,
 | 
						|
otherwise it will raise ``SchemaError``.
 | 
						|
 | 
						|
.. code:: python
 | 
						|
 | 
						|
    >>> from schema import Schema
 | 
						|
 | 
						|
    >>> Schema(int).validate(123)
 | 
						|
    123
 | 
						|
 | 
						|
    >>> Schema(int).validate('123')
 | 
						|
    Traceback (most recent call last):
 | 
						|
    ...
 | 
						|
    SchemaUnexpectedTypeError: '123' should be instance of 'int'
 | 
						|
 | 
						|
    >>> Schema(object).validate('hai')
 | 
						|
    'hai'
 | 
						|
 | 
						|
Callables
 | 
						|
~~~~~~~~~
 | 
						|
 | 
						|
If ``Schema(...)`` encounters a callable (function, class, or object with
 | 
						|
``__call__`` method) it will call it, and if its return value evaluates to
 | 
						|
``True`` it will continue validating, else—it will raise ``SchemaError``.
 | 
						|
 | 
						|
.. code:: python
 | 
						|
 | 
						|
    >>> import os
 | 
						|
 | 
						|
    >>> Schema(os.path.exists).validate('./')
 | 
						|
    './'
 | 
						|
 | 
						|
    >>> Schema(os.path.exists).validate('./non-existent/')
 | 
						|
    Traceback (most recent call last):
 | 
						|
    ...
 | 
						|
    SchemaError: exists('./non-existent/') should evaluate to True
 | 
						|
 | 
						|
    >>> Schema(lambda n: n > 0).validate(123)
 | 
						|
    123
 | 
						|
 | 
						|
    >>> Schema(lambda n: n > 0).validate(-12)
 | 
						|
    Traceback (most recent call last):
 | 
						|
    ...
 | 
						|
    SchemaError: <lambda>(-12) should evaluate to True
 | 
						|
 | 
						|
"Validatables"
 | 
						|
~~~~~~~~~~~~~~
 | 
						|
 | 
						|
If ``Schema(...)`` encounters an object with method ``validate`` it will run
 | 
						|
this method on corresponding data as ``data = obj.validate(data)``. This method
 | 
						|
may raise ``SchemaError`` exception, which will tell ``Schema`` that that piece
 | 
						|
of data is invalid, otherwise—it will continue validating.
 | 
						|
 | 
						|
An example of "validatable" is ``Regex``, that tries to match a string or a
 | 
						|
buffer with the given regular expression (itself as a string, buffer or
 | 
						|
compiled regex ``SRE_Pattern``):
 | 
						|
 | 
						|
.. code:: python
 | 
						|
 | 
						|
    >>> from schema import Regex
 | 
						|
    >>> import re
 | 
						|
 | 
						|
    >>> Regex(r'^foo').validate('foobar')
 | 
						|
    'foobar'
 | 
						|
 | 
						|
    >>> Regex(r'^[A-Z]+$', flags=re.I).validate('those-dashes-dont-match')
 | 
						|
    Traceback (most recent call last):
 | 
						|
    ...
 | 
						|
    SchemaError: Regex('^[A-Z]+$', flags=re.IGNORECASE) does not match 'those-dashes-dont-match'
 | 
						|
 | 
						|
For a more general case, you can use ``Use`` for creating such objects.
 | 
						|
``Use`` helps to use a function or type to convert a value while validating it:
 | 
						|
 | 
						|
.. code:: python
 | 
						|
 | 
						|
    >>> from schema import Use
 | 
						|
 | 
						|
    >>> Schema(Use(int)).validate('123')
 | 
						|
    123
 | 
						|
 | 
						|
    >>> Schema(Use(lambda f: open(f, 'a'))).validate('LICENSE-MIT')
 | 
						|
    <open file 'LICENSE-MIT', mode 'a' at 0x...>
 | 
						|
 | 
						|
Dropping the details, ``Use`` is basically:
 | 
						|
 | 
						|
.. code:: python
 | 
						|
 | 
						|
    class Use(object):
 | 
						|
 | 
						|
        def __init__(self, callable_):
 | 
						|
            self._callable = callable_
 | 
						|
 | 
						|
        def validate(self, data):
 | 
						|
            try:
 | 
						|
                return self._callable(data)
 | 
						|
            except Exception as e:
 | 
						|
                raise SchemaError('%r raised %r' % (self._callable.__name__, e))
 | 
						|
 | 
						|
Now you can write your own validation-aware classes and data types.
 | 
						|
 | 
						|
Lists, similar containers
 | 
						|
~~~~~~~~~~~~~~~~~~~~~~~~~
 | 
						|
 | 
						|
If ``Schema(...)`` encounters an instance of ``list``, ``tuple``, ``set`` or
 | 
						|
``frozenset``, it will validate contents of corresponding data container
 | 
						|
against schemas listed inside that container:
 | 
						|
 | 
						|
 | 
						|
.. code:: python
 | 
						|
 | 
						|
    >>> Schema([1, 0]).validate([1, 1, 0, 1])
 | 
						|
    [1, 1, 0, 1]
 | 
						|
 | 
						|
    >>> Schema((int, float)).validate((5, 7, 8, 'not int or float here'))
 | 
						|
    Traceback (most recent call last):
 | 
						|
    ...
 | 
						|
    SchemaError: Or(<type 'int'>, <type 'float'>) did not validate 'not int or float here'
 | 
						|
    'not int or float here' should be instance of 'float'
 | 
						|
 | 
						|
Dictionaries
 | 
						|
~~~~~~~~~~~~
 | 
						|
 | 
						|
If ``Schema(...)`` encounters an instance of ``dict``, it will validate data
 | 
						|
key-value pairs:
 | 
						|
 | 
						|
.. code:: python
 | 
						|
 | 
						|
    >>> d = Schema({'name': str,
 | 
						|
    ...             'age': lambda n: 18 <= n <= 99}).validate({'name': 'Sue', 'age': 28})
 | 
						|
 | 
						|
    >>> assert d == {'name': 'Sue', 'age': 28}
 | 
						|
 | 
						|
You can specify keys as schemas too:
 | 
						|
 | 
						|
.. code:: python
 | 
						|
 | 
						|
    >>> schema = Schema({str: int,  # string keys should have integer values
 | 
						|
    ...                  int: None})  # int keys should be always None
 | 
						|
 | 
						|
    >>> data = schema.validate({'key1': 1, 'key2': 2,
 | 
						|
    ...                         10: None, 20: None})
 | 
						|
 | 
						|
    >>> schema.validate({'key1': 1,
 | 
						|
    ...                   10: 'not None here'})
 | 
						|
    Traceback (most recent call last):
 | 
						|
    ...
 | 
						|
    SchemaError: Key '10' error:
 | 
						|
    None does not match 'not None here'
 | 
						|
 | 
						|
This is useful if you want to check certain key-values, but don't care
 | 
						|
about other:
 | 
						|
 | 
						|
.. code:: python
 | 
						|
 | 
						|
    >>> schema = Schema({'<id>': int,
 | 
						|
    ...                  '<file>': Use(open),
 | 
						|
    ...                  str: object})  # don't care about other str keys
 | 
						|
 | 
						|
    >>> data = schema.validate({'<id>': 10,
 | 
						|
    ...                         '<file>': 'README.rst',
 | 
						|
    ...                         '--verbose': True})
 | 
						|
 | 
						|
You can mark a key as optional as follows:
 | 
						|
 | 
						|
.. code:: python
 | 
						|
 | 
						|
    >>> from schema import Optional
 | 
						|
    >>> Schema({'name': str,
 | 
						|
    ...         Optional('occupation'): str}).validate({'name': 'Sam'})
 | 
						|
    {'name': 'Sam'}
 | 
						|
 | 
						|
``Optional`` keys can also carry a ``default``, to be used when no key in the
 | 
						|
data matches:
 | 
						|
 | 
						|
.. code:: python
 | 
						|
 | 
						|
    >>> from schema import Optional
 | 
						|
    >>> Schema({Optional('color', default='blue'): str,
 | 
						|
    ...         str: str}).validate({'texture': 'furry'}
 | 
						|
    ...       ) == {'color': 'blue', 'texture': 'furry'}
 | 
						|
    True
 | 
						|
 | 
						|
Defaults are used verbatim, not passed through any validators specified in the
 | 
						|
value.
 | 
						|
 | 
						|
**schema** has classes ``And`` and ``Or`` that help validating several schemas
 | 
						|
for the same data:
 | 
						|
 | 
						|
.. code:: python
 | 
						|
 | 
						|
    >>> from schema import And, Or
 | 
						|
 | 
						|
    >>> Schema({'age': And(int, lambda n: 0 < n < 99)}).validate({'age': 7})
 | 
						|
    {'age': 7}
 | 
						|
 | 
						|
    >>> Schema({'password': And(str, lambda s: len(s) > 6)}).validate({'password': 'hai'})
 | 
						|
    Traceback (most recent call last):
 | 
						|
    ...
 | 
						|
    SchemaError: Key 'password' error:
 | 
						|
    <lambda>('hai') should evaluate to True
 | 
						|
 | 
						|
    >>> Schema(And(Or(int, float), lambda x: x > 0)).validate(3.1415)
 | 
						|
    3.1415
 | 
						|
 | 
						|
Extra Keys
 | 
						|
~~~~~~~~~~
 | 
						|
 | 
						|
The ``Schema(...)`` parameter ``ignore_extra_keys`` causes validation to ignore extra keys in a dictionary, and also to not return them after validating.
 | 
						|
 | 
						|
.. code:: python
 | 
						|
 | 
						|
    >>> schema = Schema({'name': str}, ignore_extra_keys=True)
 | 
						|
    >>> schema.validate({'name': 'Sam', 'age': '42'})
 | 
						|
    {'name': 'Sam'}
 | 
						|
 | 
						|
If you would like any extra keys returned, use ``object: object`` as one of the key/value pairs, which will match any key and any value.
 | 
						|
Otherwise, extra keys will raise a ``SchemaError``.
 | 
						|
 | 
						|
User-friendly error reporting
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
 | 
						|
You can pass a keyword argument ``error`` to any of validatable classes
 | 
						|
(such as ``Schema``, ``And``, ``Or``, ``Regex``, ``Use``) to report this error
 | 
						|
instead of a built-in one.
 | 
						|
 | 
						|
.. code:: python
 | 
						|
 | 
						|
    >>> Schema(Use(int, error='Invalid year')).validate('XVII')
 | 
						|
    Traceback (most recent call last):
 | 
						|
    ...
 | 
						|
    SchemaError: Invalid year
 | 
						|
 | 
						|
You can see all errors that occurred by accessing exception's ``exc.autos``
 | 
						|
for auto-generated error messages, and ``exc.errors`` for errors
 | 
						|
which had ``error`` text passed to them.
 | 
						|
 | 
						|
You can exit with ``sys.exit(exc.code)`` if you want to show the messages
 | 
						|
to the user without traceback. ``error`` messages are given precedence in that
 | 
						|
case.
 | 
						|
 | 
						|
A JSON API example
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
 | 
						|
Here is a quick example: validation of
 | 
						|
`create a gist <http://developer.github.com/v3/gists/>`_
 | 
						|
request from github API.
 | 
						|
 | 
						|
.. code:: python
 | 
						|
 | 
						|
    >>> gist = '''{"description": "the description for this gist",
 | 
						|
    ...            "public": true,
 | 
						|
    ...            "files": {
 | 
						|
    ...                "file1.txt": {"content": "String file contents"},
 | 
						|
    ...                "other.txt": {"content": "Another file contents"}}}'''
 | 
						|
 | 
						|
    >>> from schema import Schema, And, Use, Optional
 | 
						|
 | 
						|
    >>> import json
 | 
						|
 | 
						|
    >>> gist_schema = Schema(And(Use(json.loads),  # first convert from JSON
 | 
						|
    ...                          # use basestring since json returns unicode
 | 
						|
    ...                          {Optional('description'): basestring,
 | 
						|
    ...                           'public': bool,
 | 
						|
    ...                           'files': {basestring: {'content': basestring}}}))
 | 
						|
 | 
						|
    >>> gist = gist_schema.validate(gist)
 | 
						|
 | 
						|
    # gist:
 | 
						|
    {u'description': u'the description for this gist',
 | 
						|
     u'files': {u'file1.txt': {u'content': u'String file contents'},
 | 
						|
                u'other.txt': {u'content': u'Another file contents'}},
 | 
						|
     u'public': True}
 | 
						|
 | 
						|
Using **schema** with `docopt <http://github.com/docopt/docopt>`_
 | 
						|
-------------------------------------------------------------------------------
 | 
						|
 | 
						|
Assume you are using **docopt** with the following usage-pattern:
 | 
						|
 | 
						|
    Usage: my_program.py [--count=N] <path> <files>...
 | 
						|
 | 
						|
and you would like to validate that ``<files>`` are readable, and that
 | 
						|
``<path>`` exists, and that ``--count`` is either integer from 0 to 5, or
 | 
						|
``None``.
 | 
						|
 | 
						|
Assuming **docopt** returns the following dict:
 | 
						|
 | 
						|
.. code:: python
 | 
						|
 | 
						|
    >>> args = {'<files>': ['LICENSE-MIT', 'setup.py'],
 | 
						|
    ...         '<path>': '../',
 | 
						|
    ...         '--count': '3'}
 | 
						|
 | 
						|
this is how you validate it using ``schema``:
 | 
						|
 | 
						|
.. code:: python
 | 
						|
 | 
						|
    >>> from schema import Schema, And, Or, Use
 | 
						|
    >>> import os
 | 
						|
 | 
						|
    >>> s = Schema({'<files>': [Use(open)],
 | 
						|
    ...             '<path>': os.path.exists,
 | 
						|
    ...             '--count': Or(None, And(Use(int), lambda n: 0 < n < 5))})
 | 
						|
 | 
						|
    >>> args = s.validate(args)
 | 
						|
 | 
						|
    >>> args['<files>']
 | 
						|
    [<open file 'LICENSE-MIT', mode 'r' at 0x...>, <open file 'setup.py', mode 'r' at 0x...>]
 | 
						|
 | 
						|
    >>> args['<path>']
 | 
						|
    '../'
 | 
						|
 | 
						|
    >>> args['--count']
 | 
						|
    3
 | 
						|
 | 
						|
As you can see, **schema** validated data successfully, opened files and
 | 
						|
converted ``'3'`` to ``int``.
 |