mirror of https://github.com/cutefishos/calculator
				
				
				
			
			You cannot select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
	
	
		
			1808 lines
		
	
	
		
			45 KiB
		
	
	
	
		
			C
		
	
			
		
		
	
	
			1808 lines
		
	
	
		
			45 KiB
		
	
	
	
		
			C
		
	
/* number.c: Implements arbitrary precision numbers. */
 | 
						|
/*
 | 
						|
  Copyright (C) 1991, 1992, 1993, 1994, 1997, 2000 Free Software Foundation, Inc.
 | 
						|
 | 
						|
  This program is free software; you can redistribute it and/or modify
 | 
						|
  it under the terms of the GNU General Public License as published by
 | 
						|
  the Free Software Foundation; either version 2 of the License , or
 | 
						|
  (at your option) any later version.
 | 
						|
 | 
						|
  This program is distributed in the hope that it will be useful,
 | 
						|
  but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
  GNU General Public License for more details.
 | 
						|
 | 
						|
  You should have received a copy of the GNU General Public License
 | 
						|
  along with this program; see the file COPYING.  If not, write to:
 | 
						|
 | 
						|
  The Free Software Foundation, Inc.
 | 
						|
  59 Temple Place, Suite 330
 | 
						|
  Boston, MA 02111-1307 USA.
 | 
						|
 | 
						|
 | 
						|
  You may contact the author by:
 | 
						|
  e-mail:  philnelson@acm.org
 | 
						|
  us-mail:  Philip A. Nelson
 | 
						|
  Computer Science Department, 9062
 | 
						|
  Western Washington University
 | 
						|
  Bellingham, WA 98226-9062
 | 
						|
 | 
						|
*************************************************************************/
 | 
						|
 | 
						|
#include "number.h"
 | 
						|
 | 
						|
#include <stdio.h>
 | 
						|
#include <assert.h>
 | 
						|
#include <stdlib.h>
 | 
						|
#include <string.h>
 | 
						|
#include <ctype.h>/* Prototypes needed for external utility routines. */
 | 
						|
 | 
						|
#define bc_rt_warn rt_warn
 | 
						|
#define bc_rt_error rt_error
 | 
						|
#define bc_out_of_memory out_of_memory
 | 
						|
 | 
						|
_PROTOTYPE(void rt_warn, (char *mesg ,...));
 | 
						|
_PROTOTYPE(void rt_error, (char *mesg ,...));
 | 
						|
_PROTOTYPE(void out_of_memory, (void));
 | 
						|
 | 
						|
 | 
						|
void out_of_memory(void){
 | 
						|
    return;
 | 
						|
}
 | 
						|
 | 
						|
void rt_warn(char *mesg ,...){
 | 
						|
    return;
 | 
						|
}
 | 
						|
 | 
						|
void rt_error(char *mesg ,...){
 | 
						|
    return;
 | 
						|
}
 | 
						|
 | 
						|
/* Storage used for special numbers. */
 | 
						|
bc_num _zero_;
 | 
						|
bc_num _one_;
 | 
						|
bc_num _two_;
 | 
						|
 | 
						|
static bc_num _bc_Free_list = NULL;
 | 
						|
 | 
						|
/* new_num allocates a number and sets fields to known values. */
 | 
						|
 | 
						|
bc_num
 | 
						|
bc_new_num (length, scale)
 | 
						|
    int length, scale;
 | 
						|
{
 | 
						|
    bc_num temp;
 | 
						|
 | 
						|
    if (_bc_Free_list != NULL) {
 | 
						|
        temp = _bc_Free_list;
 | 
						|
        _bc_Free_list = temp->n_next;
 | 
						|
    } else {
 | 
						|
        temp = (bc_num) malloc (sizeof(bc_struct));
 | 
						|
        if (temp == NULL) bc_out_of_memory ();
 | 
						|
    }
 | 
						|
    temp->n_sign = PLUS;
 | 
						|
    temp->n_len = length;
 | 
						|
    temp->n_scale = scale;
 | 
						|
    temp->n_refs = 1;
 | 
						|
    temp->n_ptr = (char *) malloc (length+scale+1);
 | 
						|
    if (temp->n_ptr == NULL) bc_out_of_memory();
 | 
						|
    temp->n_value = temp->n_ptr;
 | 
						|
    memset (temp->n_ptr, 0, length+scale);
 | 
						|
    return temp;
 | 
						|
}
 | 
						|
 | 
						|
/* "Frees" a bc_num NUM.  Actually decreases reference count and only
 | 
						|
   frees the storage if reference count is zero. */
 | 
						|
 | 
						|
void
 | 
						|
bc_free_num (num)
 | 
						|
bc_num *num;
 | 
						|
{
 | 
						|
    if (*num == NULL) return;
 | 
						|
    (*num)->n_refs--;
 | 
						|
    if ((*num)->n_refs == 0) {
 | 
						|
        if ((*num)->n_ptr)
 | 
						|
            free ((*num)->n_ptr);
 | 
						|
        (*num)->n_next = _bc_Free_list;
 | 
						|
        _bc_Free_list = *num;
 | 
						|
    }
 | 
						|
    *num = NULL;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* Intitialize the number package! */
 | 
						|
 | 
						|
void
 | 
						|
bc_init_numbers ()
 | 
						|
{
 | 
						|
    _zero_ = bc_new_num (1,0);
 | 
						|
    _one_  = bc_new_num (1,0);
 | 
						|
    _one_->n_value[0] = 1;
 | 
						|
    _two_  = bc_new_num (1,0);
 | 
						|
    _two_->n_value[0] = 2;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* Make a copy of a number!  Just increments the reference count! */
 | 
						|
 | 
						|
bc_num
 | 
						|
bc_copy_num (num)
 | 
						|
bc_num num;
 | 
						|
{
 | 
						|
    num->n_refs++;
 | 
						|
    return num;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* Initialize a number NUM by making it a copy of zero. */
 | 
						|
 | 
						|
void
 | 
						|
bc_init_num (num)
 | 
						|
bc_num *num;
 | 
						|
{
 | 
						|
    *num = bc_copy_num (_zero_);
 | 
						|
}
 | 
						|
 | 
						|
/* For many things, we may have leading zeros in a number NUM.
 | 
						|
   _bc_rm_leading_zeros just moves the data "value" pointer to the
 | 
						|
   correct place and adjusts the length. */
 | 
						|
 | 
						|
static void
 | 
						|
_bc_rm_leading_zeros (num)
 | 
						|
bc_num num;
 | 
						|
{
 | 
						|
    /* We can move n_value to point to the first non zero digit! */
 | 
						|
    while (*num->n_value == 0 && num->n_len > 1) {
 | 
						|
        num->n_value++;
 | 
						|
        num->n_len--;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* Compare two bc numbers.  Return value is 0 if equal, -1 if N1 is less
 | 
						|
   than N2 and +1 if N1 is greater than N2.  If USE_SIGN is false, just
 | 
						|
   compare the magnitudes. */
 | 
						|
 | 
						|
static int
 | 
						|
_bc_do_compare (n1, n2, use_sign, ignore_last)
 | 
						|
    bc_num n1, n2;
 | 
						|
int use_sign;
 | 
						|
int ignore_last;
 | 
						|
{
 | 
						|
    char *n1ptr, *n2ptr;
 | 
						|
    int  count;
 | 
						|
 | 
						|
    /* First, compare signs. */
 | 
						|
    if (use_sign && n1->n_sign != n2->n_sign)
 | 
						|
    {
 | 
						|
        if (n1->n_sign == PLUS)
 | 
						|
            return (1);	/* Positive N1 > Negative N2 */
 | 
						|
        else
 | 
						|
            return (-1);	/* Negative N1 < Positive N1 */
 | 
						|
    }
 | 
						|
 | 
						|
    /* Now compare the magnitude. */
 | 
						|
    if (n1->n_len != n2->n_len)
 | 
						|
    {
 | 
						|
        if (n1->n_len > n2->n_len)
 | 
						|
	{
 | 
						|
            /* Magnitude of n1 > n2. */
 | 
						|
            if (!use_sign || n1->n_sign == PLUS)
 | 
						|
                return (1);
 | 
						|
            else
 | 
						|
                return (-1);
 | 
						|
	}
 | 
						|
        else
 | 
						|
	{
 | 
						|
            /* Magnitude of n1 < n2. */
 | 
						|
            if (!use_sign || n1->n_sign == PLUS)
 | 
						|
                return (-1);
 | 
						|
            else
 | 
						|
                return (1);
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
    /* If we get here, they have the same number of integer digits.
 | 
						|
       check the integer part and the equal length part of the fraction. */
 | 
						|
    count = n1->n_len + MIN (n1->n_scale, n2->n_scale);
 | 
						|
    n1ptr = n1->n_value;
 | 
						|
    n2ptr = n2->n_value;
 | 
						|
 | 
						|
    while ((count > 0) && (*n1ptr == *n2ptr))
 | 
						|
    {
 | 
						|
        n1ptr++;
 | 
						|
        n2ptr++;
 | 
						|
        count--;
 | 
						|
    }
 | 
						|
    if (ignore_last && count == 1 && n1->n_scale == n2->n_scale)
 | 
						|
        return (0);
 | 
						|
    if (count != 0)
 | 
						|
    {
 | 
						|
        if (*n1ptr > *n2ptr)
 | 
						|
	{
 | 
						|
            /* Magnitude of n1 > n2. */
 | 
						|
            if (!use_sign || n1->n_sign == PLUS)
 | 
						|
                return (1);
 | 
						|
            else
 | 
						|
                return (-1);
 | 
						|
	}
 | 
						|
        else
 | 
						|
	{
 | 
						|
            /* Magnitude of n1 < n2. */
 | 
						|
            if (!use_sign || n1->n_sign == PLUS)
 | 
						|
                return (-1);
 | 
						|
            else
 | 
						|
                return (1);
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
    /* They are equal up to the last part of the equal part of the fraction. */
 | 
						|
    if (n1->n_scale != n2->n_scale)
 | 
						|
    {
 | 
						|
        if (n1->n_scale > n2->n_scale)
 | 
						|
	{
 | 
						|
            for (count = n1->n_scale-n2->n_scale; count>0; count--)
 | 
						|
                if (*n1ptr++ != 0)
 | 
						|
                {
 | 
						|
                    /* Magnitude of n1 > n2. */
 | 
						|
                    if (!use_sign || n1->n_sign == PLUS)
 | 
						|
                        return (1);
 | 
						|
                    else
 | 
						|
                        return (-1);
 | 
						|
                }
 | 
						|
	}
 | 
						|
        else
 | 
						|
	{
 | 
						|
            for (count = n2->n_scale-n1->n_scale; count>0; count--)
 | 
						|
                if (*n2ptr++ != 0)
 | 
						|
                {
 | 
						|
                    /* Magnitude of n1 < n2. */
 | 
						|
                    if (!use_sign || n1->n_sign == PLUS)
 | 
						|
                        return (-1);
 | 
						|
                    else
 | 
						|
                        return (1);
 | 
						|
                }
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
    /* They must be equal! */
 | 
						|
    return (0);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* This is the "user callable" routine to compare numbers N1 and N2. */
 | 
						|
 | 
						|
int
 | 
						|
bc_compare (n1, n2)
 | 
						|
    bc_num n1, n2;
 | 
						|
{
 | 
						|
    return _bc_do_compare (n1, n2, TRUE, FALSE);
 | 
						|
}
 | 
						|
 | 
						|
/* In some places we need to check if the number is negative. */
 | 
						|
 | 
						|
char
 | 
						|
bc_is_neg (num)
 | 
						|
bc_num num;
 | 
						|
{
 | 
						|
    return num->n_sign == MINUS;
 | 
						|
}
 | 
						|
 | 
						|
/* In some places we need to check if the number NUM is zero. */
 | 
						|
 | 
						|
char
 | 
						|
bc_is_zero (num)
 | 
						|
bc_num num;
 | 
						|
{
 | 
						|
    int  count;
 | 
						|
    char *nptr;
 | 
						|
 | 
						|
    /* Quick check. */
 | 
						|
    if (num == _zero_) return TRUE;
 | 
						|
 | 
						|
    /* Initialize */
 | 
						|
    count = num->n_len + num->n_scale;
 | 
						|
    nptr = num->n_value;
 | 
						|
 | 
						|
    /* The check */
 | 
						|
    while ((count > 0) && (*nptr++ == 0)) count--;
 | 
						|
 | 
						|
    if (count != 0)
 | 
						|
        return FALSE;
 | 
						|
    else
 | 
						|
        return TRUE;
 | 
						|
}
 | 
						|
 | 
						|
/* In some places we need to check if the number NUM is almost zero.
 | 
						|
   Specifically, all but the last digit is 0 and the last digit is 1.
 | 
						|
   Last digit is defined by scale. */
 | 
						|
 | 
						|
char
 | 
						|
bc_is_near_zero (num, scale)
 | 
						|
bc_num num;
 | 
						|
int scale;
 | 
						|
{
 | 
						|
    int  count;
 | 
						|
    char *nptr;
 | 
						|
 | 
						|
    /* Error checking */
 | 
						|
    if (scale > num->n_scale)
 | 
						|
        scale = num->n_scale;
 | 
						|
 | 
						|
    /* Initialize */
 | 
						|
    count = num->n_len + scale;
 | 
						|
    nptr = num->n_value;
 | 
						|
 | 
						|
    /* The check */
 | 
						|
    while ((count > 0) && (*nptr++ == 0)) count--;
 | 
						|
 | 
						|
    if (count != 0 && (count != 1 || *--nptr != 1))
 | 
						|
        return FALSE;
 | 
						|
    else
 | 
						|
        return TRUE;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* Perform addition: N1 is added to N2 and the value is
 | 
						|
   returned.  The signs of N1 and N2 are ignored.
 | 
						|
   SCALE_MIN is to set the minimum scale of the result. */
 | 
						|
 | 
						|
static bc_num
 | 
						|
_bc_do_add (n1, n2, scale_min)
 | 
						|
    bc_num n1, n2;
 | 
						|
int scale_min;
 | 
						|
{
 | 
						|
    bc_num sum;
 | 
						|
    int sum_scale, sum_digits;
 | 
						|
    char *n1ptr, *n2ptr, *sumptr;
 | 
						|
    int carry, n1bytes, n2bytes;
 | 
						|
    int count;
 | 
						|
 | 
						|
    /* Prepare sum. */
 | 
						|
    sum_scale = MAX (n1->n_scale, n2->n_scale);
 | 
						|
    sum_digits = MAX (n1->n_len, n2->n_len) + 1;
 | 
						|
    sum = bc_new_num (sum_digits, MAX(sum_scale, scale_min));
 | 
						|
 | 
						|
    /* Zero extra digits made by scale_min. */
 | 
						|
    if (scale_min > sum_scale)
 | 
						|
    {
 | 
						|
        sumptr = (char *) (sum->n_value + sum_scale + sum_digits);
 | 
						|
        for (count = scale_min - sum_scale; count > 0; count--)
 | 
						|
            *sumptr++ = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Start with the fraction part.  Initialize the pointers. */
 | 
						|
    n1bytes = n1->n_scale;
 | 
						|
    n2bytes = n2->n_scale;
 | 
						|
    n1ptr = (char *) (n1->n_value + n1->n_len + n1bytes - 1);
 | 
						|
    n2ptr = (char *) (n2->n_value + n2->n_len + n2bytes - 1);
 | 
						|
    sumptr = (char *) (sum->n_value + sum_scale + sum_digits - 1);
 | 
						|
 | 
						|
    /* Add the fraction part.  First copy the longer fraction.*/
 | 
						|
    if (n1bytes != n2bytes)
 | 
						|
    {
 | 
						|
        if (n1bytes > n2bytes)
 | 
						|
            while (n1bytes>n2bytes)
 | 
						|
            { *sumptr-- = *n1ptr--; n1bytes--;}
 | 
						|
        else
 | 
						|
            while (n2bytes>n1bytes)
 | 
						|
            { *sumptr-- = *n2ptr--; n2bytes--;}
 | 
						|
    }
 | 
						|
 | 
						|
    /* Now add the remaining fraction part and equal size integer parts. */
 | 
						|
    n1bytes += n1->n_len;
 | 
						|
    n2bytes += n2->n_len;
 | 
						|
    carry = 0;
 | 
						|
    while ((n1bytes > 0) && (n2bytes > 0))
 | 
						|
    {
 | 
						|
        *sumptr = *n1ptr-- + *n2ptr-- + carry;
 | 
						|
        if (*sumptr > (BASE-1))
 | 
						|
	{
 | 
						|
            carry = 1;
 | 
						|
            *sumptr -= BASE;
 | 
						|
	}
 | 
						|
        else
 | 
						|
            carry = 0;
 | 
						|
        sumptr--;
 | 
						|
        n1bytes--;
 | 
						|
        n2bytes--;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Now add carry the longer integer part. */
 | 
						|
    if (n1bytes == 0)
 | 
						|
    { n1bytes = n2bytes; n1ptr = n2ptr; }
 | 
						|
    while (n1bytes-- > 0)
 | 
						|
    {
 | 
						|
        *sumptr = *n1ptr-- + carry;
 | 
						|
        if (*sumptr > (BASE-1))
 | 
						|
	{
 | 
						|
            carry = 1;
 | 
						|
            *sumptr -= BASE;
 | 
						|
        }
 | 
						|
        else
 | 
						|
            carry = 0;
 | 
						|
        sumptr--;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Set final carry. */
 | 
						|
    if (carry == 1)
 | 
						|
        *sumptr += 1;
 | 
						|
 | 
						|
    /* Adjust sum and return. */
 | 
						|
    _bc_rm_leading_zeros (sum);
 | 
						|
    return sum;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* Perform subtraction: N2 is subtracted from N1 and the value is
 | 
						|
   returned.  The signs of N1 and N2 are ignored.  Also, N1 is
 | 
						|
   assumed to be larger than N2.  SCALE_MIN is the minimum scale
 | 
						|
   of the result. */
 | 
						|
 | 
						|
static bc_num
 | 
						|
_bc_do_sub (n1, n2, scale_min)
 | 
						|
    bc_num n1, n2;
 | 
						|
int scale_min;
 | 
						|
{
 | 
						|
    bc_num diff;
 | 
						|
    int diff_scale, diff_len;
 | 
						|
    int min_scale, min_len;
 | 
						|
    char *n1ptr, *n2ptr, *diffptr;
 | 
						|
    int borrow, count, val;
 | 
						|
 | 
						|
    /* Allocate temporary storage. */
 | 
						|
    diff_len = MAX (n1->n_len, n2->n_len);
 | 
						|
    diff_scale = MAX (n1->n_scale, n2->n_scale);
 | 
						|
    min_len = MIN  (n1->n_len, n2->n_len);
 | 
						|
    min_scale = MIN (n1->n_scale, n2->n_scale);
 | 
						|
    diff = bc_new_num (diff_len, MAX(diff_scale, scale_min));
 | 
						|
 | 
						|
    /* Zero extra digits made by scale_min. */
 | 
						|
    if (scale_min > diff_scale)
 | 
						|
    {
 | 
						|
        diffptr = (char *) (diff->n_value + diff_len + diff_scale);
 | 
						|
        for (count = scale_min - diff_scale; count > 0; count--)
 | 
						|
            *diffptr++ = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Initialize the subtract. */
 | 
						|
    n1ptr = (char *) (n1->n_value + n1->n_len + n1->n_scale -1);
 | 
						|
    n2ptr = (char *) (n2->n_value + n2->n_len + n2->n_scale -1);
 | 
						|
    diffptr = (char *) (diff->n_value + diff_len + diff_scale -1);
 | 
						|
 | 
						|
    /* Subtract the numbers. */
 | 
						|
    borrow = 0;
 | 
						|
 | 
						|
    /* Take care of the longer scaled number. */
 | 
						|
    if (n1->n_scale != min_scale)
 | 
						|
    {
 | 
						|
        /* n1 has the longer scale */
 | 
						|
        for (count = n1->n_scale - min_scale; count > 0; count--)
 | 
						|
            *diffptr-- = *n1ptr--;
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        /* n2 has the longer scale */
 | 
						|
        for (count = n2->n_scale - min_scale; count > 0; count--)
 | 
						|
	{
 | 
						|
            val = - *n2ptr-- - borrow;
 | 
						|
            if (val < 0)
 | 
						|
	    {
 | 
						|
                val += BASE;
 | 
						|
                borrow = 1;
 | 
						|
	    }
 | 
						|
            else
 | 
						|
                borrow = 0;
 | 
						|
            *diffptr-- = val;
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
    /* Now do the equal length scale and integer parts. */
 | 
						|
 | 
						|
    for (count = 0; count < min_len + min_scale; count++)
 | 
						|
    {
 | 
						|
        val = *n1ptr-- - *n2ptr-- - borrow;
 | 
						|
        if (val < 0)
 | 
						|
	{
 | 
						|
            val += BASE;
 | 
						|
            borrow = 1;
 | 
						|
	}
 | 
						|
        else
 | 
						|
            borrow = 0;
 | 
						|
        *diffptr-- = val;
 | 
						|
    }
 | 
						|
 | 
						|
    /* If n1 has more digits then n2, we now do that subtract. */
 | 
						|
    if (diff_len != min_len)
 | 
						|
    {
 | 
						|
        for (count = diff_len - min_len; count > 0; count--)
 | 
						|
	{
 | 
						|
            val = *n1ptr-- - borrow;
 | 
						|
            if (val < 0)
 | 
						|
	    {
 | 
						|
                val += BASE;
 | 
						|
                borrow = 1;
 | 
						|
	    }
 | 
						|
            else
 | 
						|
                borrow = 0;
 | 
						|
            *diffptr-- = val;
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
    /* Clean up and return. */
 | 
						|
    _bc_rm_leading_zeros (diff);
 | 
						|
    return diff;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* Here is the full subtract routine that takes care of negative numbers.
 | 
						|
   N2 is subtracted from N1 and the result placed in RESULT.  SCALE_MIN
 | 
						|
   is the minimum scale for the result. */
 | 
						|
 | 
						|
void
 | 
						|
bc_sub (n1, n2, result, scale_min)
 | 
						|
    bc_num n1, n2, *result;
 | 
						|
int scale_min;
 | 
						|
{
 | 
						|
    bc_num diff = NULL;
 | 
						|
    int cmp_res;
 | 
						|
    int res_scale;
 | 
						|
 | 
						|
    if (n1->n_sign != n2->n_sign)
 | 
						|
    {
 | 
						|
        diff = _bc_do_add (n1, n2, scale_min);
 | 
						|
        diff->n_sign = n1->n_sign;
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        /* subtraction must be done. */
 | 
						|
        /* Compare magnitudes. */
 | 
						|
        cmp_res = _bc_do_compare (n1, n2, FALSE, FALSE);
 | 
						|
        switch (cmp_res)
 | 
						|
	{
 | 
						|
	case -1:
 | 
						|
            /* n1 is less than n2, subtract n1 from n2. */
 | 
						|
            diff = _bc_do_sub (n2, n1, scale_min);
 | 
						|
            diff->n_sign = (n2->n_sign == PLUS ? MINUS : PLUS);
 | 
						|
            break;
 | 
						|
	case  0:
 | 
						|
            /* They are equal! return zero! */
 | 
						|
            res_scale = MAX (scale_min, MAX(n1->n_scale, n2->n_scale));
 | 
						|
            diff = bc_new_num (1, res_scale);
 | 
						|
            memset (diff->n_value, 0, res_scale+1);
 | 
						|
            break;
 | 
						|
	case  1:
 | 
						|
            /* n2 is less than n1, subtract n2 from n1. */
 | 
						|
            diff = _bc_do_sub (n1, n2, scale_min);
 | 
						|
            diff->n_sign = n1->n_sign;
 | 
						|
            break;
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
    /* Clean up and return. */
 | 
						|
    bc_free_num (result);
 | 
						|
    *result = diff;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* Here is the full add routine that takes care of negative numbers.
 | 
						|
   N1 is added to N2 and the result placed into RESULT.  SCALE_MIN
 | 
						|
   is the minimum scale for the result. */
 | 
						|
 | 
						|
void
 | 
						|
bc_add (n1, n2, result, scale_min)
 | 
						|
    bc_num n1, n2, *result;
 | 
						|
int scale_min;
 | 
						|
{
 | 
						|
    bc_num sum = NULL;
 | 
						|
    int cmp_res;
 | 
						|
    int res_scale;
 | 
						|
 | 
						|
    if (n1->n_sign == n2->n_sign)
 | 
						|
    {
 | 
						|
        sum = _bc_do_add (n1, n2, scale_min);
 | 
						|
        sum->n_sign = n1->n_sign;
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        /* subtraction must be done. */
 | 
						|
        cmp_res = _bc_do_compare (n1, n2, FALSE, FALSE);  /* Compare magnitudes. */
 | 
						|
        switch (cmp_res)
 | 
						|
	{
 | 
						|
	case -1:
 | 
						|
            /* n1 is less than n2, subtract n1 from n2. */
 | 
						|
            sum = _bc_do_sub (n2, n1, scale_min);
 | 
						|
            sum->n_sign = n2->n_sign;
 | 
						|
            break;
 | 
						|
	case  0:
 | 
						|
            /* They are equal! return zero with the correct scale! */
 | 
						|
            res_scale = MAX (scale_min, MAX(n1->n_scale, n2->n_scale));
 | 
						|
            sum = bc_new_num (1, res_scale);
 | 
						|
            memset (sum->n_value, 0, res_scale+1);
 | 
						|
            break;
 | 
						|
	case  1:
 | 
						|
            /* n2 is less than n1, subtract n2 from n1. */
 | 
						|
            sum = _bc_do_sub (n1, n2, scale_min);
 | 
						|
            sum->n_sign = n1->n_sign;
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
    /* Clean up and return. */
 | 
						|
    bc_free_num (result);
 | 
						|
    *result = sum;
 | 
						|
}
 | 
						|
 | 
						|
/* Recursive vs non-recursive multiply crossover ranges. */
 | 
						|
#if defined(MULDIGITS)
 | 
						|
#include "muldigits.h"
 | 
						|
#else
 | 
						|
#define MUL_BASE_DIGITS 80
 | 
						|
#endif
 | 
						|
 | 
						|
int mul_base_digits = MUL_BASE_DIGITS;
 | 
						|
#define MUL_SMALL_DIGITS mul_base_digits/4
 | 
						|
 | 
						|
/* Multiply utility routines */
 | 
						|
 | 
						|
static bc_num
 | 
						|
new_sub_num (length, scale, value)
 | 
						|
    int length, scale;
 | 
						|
char *value;
 | 
						|
{
 | 
						|
    bc_num temp;
 | 
						|
 | 
						|
    if (_bc_Free_list != NULL) {
 | 
						|
        temp = _bc_Free_list;
 | 
						|
        _bc_Free_list = temp->n_next;
 | 
						|
    } else {
 | 
						|
        temp = (bc_num) malloc (sizeof(bc_struct));
 | 
						|
        if (temp == NULL) bc_out_of_memory ();
 | 
						|
    }
 | 
						|
    temp->n_sign = PLUS;
 | 
						|
    temp->n_len = length;
 | 
						|
    temp->n_scale = scale;
 | 
						|
    temp->n_refs = 1;
 | 
						|
    temp->n_ptr = NULL;
 | 
						|
    temp->n_value = value;
 | 
						|
    return temp;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
_bc_simp_mul (bc_num n1, int n1len, bc_num n2, int n2len, bc_num *prod,
 | 
						|
	      int full_scale)
 | 
						|
{
 | 
						|
    char *n1ptr, *n2ptr, *pvptr;
 | 
						|
    char *n1end, *n2end;		/* To the end of n1 and n2. */
 | 
						|
    int indx, sum, prodlen;
 | 
						|
 | 
						|
    prodlen = n1len+n2len+1;
 | 
						|
 | 
						|
    *prod = bc_new_num (prodlen, 0);
 | 
						|
 | 
						|
    n1end = (char *) (n1->n_value + n1len - 1);
 | 
						|
    n2end = (char *) (n2->n_value + n2len - 1);
 | 
						|
    pvptr = (char *) ((*prod)->n_value + prodlen - 1);
 | 
						|
    sum = 0;
 | 
						|
 | 
						|
    /* Here is the loop... */
 | 
						|
    for (indx = 0; indx < prodlen-1; indx++)
 | 
						|
    {
 | 
						|
        n1ptr = (char *) (n1end - MAX(0, indx-n2len+1));
 | 
						|
        n2ptr = (char *) (n2end - MIN(indx, n2len-1));
 | 
						|
        while ((n1ptr >= n1->n_value) && (n2ptr <= n2end))
 | 
						|
            sum += *n1ptr-- * *n2ptr++;
 | 
						|
        *pvptr-- = sum % BASE;
 | 
						|
        sum = sum / BASE;
 | 
						|
    }
 | 
						|
    *pvptr = sum;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* A special adder/subtractor for the recursive divide and conquer
 | 
						|
   multiply algorithm.  Note: if sub is called, accum must
 | 
						|
   be larger that what is being subtracted.  Also, accum and val
 | 
						|
   must have n_scale = 0.  (e.g. they must look like integers. *) */
 | 
						|
static void
 | 
						|
_bc_shift_addsub (bc_num accum, bc_num val, int shift, int sub)
 | 
						|
{
 | 
						|
    signed char *accp, *valp;
 | 
						|
    int  count, carry;
 | 
						|
 | 
						|
    count = val->n_len;
 | 
						|
    if (val->n_value[0] == 0)
 | 
						|
        count--;
 | 
						|
    assert (accum->n_len+accum->n_scale >= shift+count);
 | 
						|
 | 
						|
    /* Set up pointers and others */
 | 
						|
    accp = (signed char *)(accum->n_value +
 | 
						|
                           accum->n_len + accum->n_scale - shift - 1);
 | 
						|
    valp = (signed char *)(val->n_value + val->n_len - 1);
 | 
						|
    carry = 0;
 | 
						|
 | 
						|
    if (sub) {
 | 
						|
        /* Subtraction, carry is really borrow. */
 | 
						|
        while (count--) {
 | 
						|
            *accp -= *valp-- + carry;
 | 
						|
            if (*accp < 0) {
 | 
						|
                carry = 1;
 | 
						|
                *accp-- += BASE;
 | 
						|
            } else {
 | 
						|
                carry = 0;
 | 
						|
                accp--;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        while (carry) {
 | 
						|
            *accp -= carry;
 | 
						|
            if (*accp < 0)
 | 
						|
                *accp-- += BASE;
 | 
						|
            else
 | 
						|
                carry = 0;
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        /* Addition */
 | 
						|
        while (count--) {
 | 
						|
            *accp += *valp-- + carry;
 | 
						|
            if (*accp > (BASE-1)) {
 | 
						|
                carry = 1;
 | 
						|
                *accp-- -= BASE;
 | 
						|
            } else {
 | 
						|
                carry = 0;
 | 
						|
                accp--;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        while (carry) {
 | 
						|
            *accp += carry;
 | 
						|
            if (*accp > (BASE-1))
 | 
						|
                *accp-- -= BASE;
 | 
						|
            else
 | 
						|
                carry = 0;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* Recursive divide and conquer multiply algorithm.
 | 
						|
   Based on
 | 
						|
   Let u = u0 + u1*(b^n)
 | 
						|
   Let v = v0 + v1*(b^n)
 | 
						|
   Then uv = (B^2n+B^n)*u1*v1 + B^n*(u1-u0)*(v0-v1) + (B^n+1)*u0*v0
 | 
						|
 | 
						|
   B is the base of storage, number of digits in u1,u0 close to equal.
 | 
						|
*/
 | 
						|
static void
 | 
						|
_bc_rec_mul (bc_num u, int ulen, bc_num v, int vlen, bc_num *prod,
 | 
						|
	     int full_scale)
 | 
						|
{
 | 
						|
    bc_num u0, u1, v0, v1;
 | 
						|
    int u0len, v0len;
 | 
						|
    bc_num m1, m2, m3, d1, d2;
 | 
						|
    int n, prodlen, m1zero;
 | 
						|
    int d1len, d2len;
 | 
						|
 | 
						|
    /* Base case? */
 | 
						|
    if ((ulen+vlen) < mul_base_digits
 | 
						|
        || ulen < MUL_SMALL_DIGITS
 | 
						|
        || vlen < MUL_SMALL_DIGITS ) {
 | 
						|
        _bc_simp_mul (u, ulen, v, vlen, prod, full_scale);
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Calculate n -- the u and v split point in digits. */
 | 
						|
    n = (MAX(ulen, vlen)+1) / 2;
 | 
						|
 | 
						|
    /* Split u and v. */
 | 
						|
    if (ulen < n) {
 | 
						|
        u1 = bc_copy_num (_zero_);
 | 
						|
        u0 = new_sub_num (ulen,0, u->n_value);
 | 
						|
    } else {
 | 
						|
        u1 = new_sub_num (ulen-n, 0, u->n_value);
 | 
						|
        u0 = new_sub_num (n, 0, u->n_value+ulen-n);
 | 
						|
    }
 | 
						|
    if (vlen < n) {
 | 
						|
        v1 = bc_copy_num (_zero_);
 | 
						|
        v0 = new_sub_num (vlen,0, v->n_value);
 | 
						|
    } else {
 | 
						|
        v1 = new_sub_num (vlen-n, 0, v->n_value);
 | 
						|
        v0 = new_sub_num (n, 0, v->n_value+vlen-n);
 | 
						|
    }
 | 
						|
    _bc_rm_leading_zeros (u1);
 | 
						|
    _bc_rm_leading_zeros (u0);
 | 
						|
    u0len = u0->n_len;
 | 
						|
    _bc_rm_leading_zeros (v1);
 | 
						|
    _bc_rm_leading_zeros (v0);
 | 
						|
    v0len = v0->n_len;
 | 
						|
 | 
						|
    m1zero = bc_is_zero(u1) || bc_is_zero(v1);
 | 
						|
 | 
						|
    /* Calculate sub results ... */
 | 
						|
 | 
						|
    bc_init_num(&d1);
 | 
						|
    bc_init_num(&d2);
 | 
						|
    bc_sub (u1, u0, &d1, 0);
 | 
						|
    d1len = d1->n_len;
 | 
						|
    bc_sub (v0, v1, &d2, 0);
 | 
						|
    d2len = d2->n_len;
 | 
						|
 | 
						|
 | 
						|
    /* Do recursive multiplies and shifted adds. */
 | 
						|
    if (m1zero)
 | 
						|
        m1 = bc_copy_num (_zero_);
 | 
						|
    else
 | 
						|
        _bc_rec_mul (u1, u1->n_len, v1, v1->n_len, &m1, 0);
 | 
						|
 | 
						|
    if (bc_is_zero(d1) || bc_is_zero(d2))
 | 
						|
        m2 = bc_copy_num (_zero_);
 | 
						|
    else
 | 
						|
        _bc_rec_mul (d1, d1len, d2, d2len, &m2, 0);
 | 
						|
 | 
						|
    if (bc_is_zero(u0) || bc_is_zero(v0))
 | 
						|
        m3 = bc_copy_num (_zero_);
 | 
						|
    else
 | 
						|
        _bc_rec_mul (u0, u0->n_len, v0, v0->n_len, &m3, 0);
 | 
						|
 | 
						|
    /* Initialize product */
 | 
						|
    prodlen = ulen+vlen+1;
 | 
						|
    *prod = bc_new_num(prodlen, 0);
 | 
						|
 | 
						|
    if (!m1zero) {
 | 
						|
        _bc_shift_addsub (*prod, m1, 2*n, 0);
 | 
						|
        _bc_shift_addsub (*prod, m1, n, 0);
 | 
						|
    }
 | 
						|
    _bc_shift_addsub (*prod, m3, n, 0);
 | 
						|
    _bc_shift_addsub (*prod, m3, 0, 0);
 | 
						|
    _bc_shift_addsub (*prod, m2, n, d1->n_sign != d2->n_sign);
 | 
						|
 | 
						|
    /* Now clean up! */
 | 
						|
    bc_free_num (&u1);
 | 
						|
    bc_free_num (&u0);
 | 
						|
    bc_free_num (&v1);
 | 
						|
    bc_free_num (&m1);
 | 
						|
    bc_free_num (&v0);
 | 
						|
    bc_free_num (&m2);
 | 
						|
    bc_free_num (&m3);
 | 
						|
    bc_free_num (&d1);
 | 
						|
    bc_free_num (&d2);
 | 
						|
}
 | 
						|
 | 
						|
/* The multiply routine.  N2 times N1 is put int PROD with the scale of
 | 
						|
   the result being MIN(N2 scale+N1 scale, MAX (SCALE, N2 scale, N1 scale)).
 | 
						|
*/
 | 
						|
 | 
						|
void
 | 
						|
bc_multiply (n1, n2, prod, scale)
 | 
						|
    bc_num n1, n2, *prod;
 | 
						|
int scale;
 | 
						|
{
 | 
						|
    bc_num pval;
 | 
						|
    int len1, len2;
 | 
						|
    int full_scale, prod_scale;
 | 
						|
 | 
						|
    /* Initialize things. */
 | 
						|
    len1 = n1->n_len + n1->n_scale;
 | 
						|
    len2 = n2->n_len + n2->n_scale;
 | 
						|
    full_scale = n1->n_scale + n2->n_scale;
 | 
						|
    prod_scale = MIN(full_scale,MAX(scale,MAX(n1->n_scale,n2->n_scale)));
 | 
						|
 | 
						|
    /* Do the multiply */
 | 
						|
    _bc_rec_mul (n1, len1, n2, len2, &pval, full_scale);
 | 
						|
 | 
						|
    /* Assign to prod and clean up the number. */
 | 
						|
    pval->n_sign = ( n1->n_sign == n2->n_sign ? PLUS : MINUS );
 | 
						|
    pval->n_value = pval->n_ptr;
 | 
						|
    pval->n_len = len2 + len1 + 1 - full_scale;
 | 
						|
    pval->n_scale = prod_scale;
 | 
						|
    _bc_rm_leading_zeros (pval);
 | 
						|
    if (bc_is_zero (pval))
 | 
						|
        pval->n_sign = PLUS;
 | 
						|
    bc_free_num (prod);
 | 
						|
    *prod = pval;
 | 
						|
}
 | 
						|
 | 
						|
/* Some utility routines for the divide:  First a one digit multiply.
 | 
						|
   NUM (with SIZE digits) is multiplied by DIGIT and the result is
 | 
						|
   placed into RESULT.  It is written so that NUM and RESULT can be
 | 
						|
   the same pointers.  */
 | 
						|
 | 
						|
static void
 | 
						|
_one_mult (num, size, digit, result)
 | 
						|
unsigned char *num;
 | 
						|
int size, digit;
 | 
						|
unsigned char *result;
 | 
						|
{
 | 
						|
    int carry, value;
 | 
						|
    unsigned char *nptr, *rptr;
 | 
						|
 | 
						|
    if (digit == 0)
 | 
						|
        memset (result, 0, size);
 | 
						|
    else
 | 
						|
    {
 | 
						|
        if (digit == 1)
 | 
						|
            memcpy (result, num, size);
 | 
						|
        else
 | 
						|
	{
 | 
						|
            /* Initialize */
 | 
						|
            nptr = (unsigned char *) (num+size-1);
 | 
						|
            rptr = (unsigned char *) (result+size-1);
 | 
						|
            carry = 0;
 | 
						|
 | 
						|
            while (size-- > 0)
 | 
						|
	    {
 | 
						|
                value = *nptr-- * digit + carry;
 | 
						|
                *rptr-- = value % BASE;
 | 
						|
                carry = value / BASE;
 | 
						|
	    }
 | 
						|
 | 
						|
            if (carry != 0) *rptr = carry;
 | 
						|
	}
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* The full division routine. This computes N1 / N2.  It returns
 | 
						|
   0 if the division is ok and the result is in QUOT.  The number of
 | 
						|
   digits after the decimal point is SCALE. It returns -1 if division
 | 
						|
   by zero is tried.  The algorithm is found in Knuth Vol 2. p237. */
 | 
						|
 | 
						|
int
 | 
						|
bc_divide (n1, n2, quot, scale)
 | 
						|
    bc_num n1, n2, *quot;
 | 
						|
int scale;
 | 
						|
{
 | 
						|
    bc_num qval;
 | 
						|
    unsigned char *num1, *num2;
 | 
						|
    unsigned char *ptr1, *ptr2, *n2ptr, *qptr;
 | 
						|
    int  scale1, val;
 | 
						|
    unsigned int  len1, len2, scale2, qdigits, extra, count;
 | 
						|
    unsigned int  qdig, qguess, borrow, carry;
 | 
						|
    unsigned char *mval;
 | 
						|
    char zero;
 | 
						|
    unsigned int  norm;
 | 
						|
 | 
						|
    /* Test for divide by zero. */
 | 
						|
    if (bc_is_zero (n2)) return -1;
 | 
						|
 | 
						|
    /* Test for divide by 1.  If it is we must truncate. */
 | 
						|
    if (n2->n_scale == 0)
 | 
						|
    {
 | 
						|
        if (n2->n_len == 1 && *n2->n_value == 1)
 | 
						|
	{
 | 
						|
            qval = bc_new_num (n1->n_len, scale);
 | 
						|
            qval->n_sign = (n1->n_sign == n2->n_sign ? PLUS : MINUS);
 | 
						|
            memset (&qval->n_value[n1->n_len],0,scale);
 | 
						|
            memcpy (qval->n_value, n1->n_value,
 | 
						|
                    n1->n_len + MIN(n1->n_scale,scale));
 | 
						|
            bc_free_num (quot);
 | 
						|
            *quot = qval;
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
    /* Set up the divide.  Move the decimal point on n1 by n2's scale.
 | 
						|
       Remember, zeros on the end of num2 are wasted effort for dividing. */
 | 
						|
    scale2 = n2->n_scale;
 | 
						|
    n2ptr = (unsigned char *) n2->n_value+n2->n_len+scale2-1;
 | 
						|
    while ((scale2 > 0) && (*n2ptr-- == 0)) scale2--;
 | 
						|
 | 
						|
    len1 = n1->n_len + scale2;
 | 
						|
    scale1 = n1->n_scale - scale2;
 | 
						|
    if (scale1 < scale)
 | 
						|
        extra = scale - scale1;
 | 
						|
    else
 | 
						|
        extra = 0;
 | 
						|
    num1 = (unsigned char *) malloc (n1->n_len+n1->n_scale+extra+2);
 | 
						|
    if (num1 == NULL) bc_out_of_memory();
 | 
						|
    memset (num1, 0, n1->n_len+n1->n_scale+extra+2);
 | 
						|
    memcpy (num1+1, n1->n_value, n1->n_len+n1->n_scale);
 | 
						|
 | 
						|
    len2 = n2->n_len + scale2;
 | 
						|
    num2 = (unsigned char *) malloc (len2+1);
 | 
						|
    if (num2 == NULL) bc_out_of_memory();
 | 
						|
    memcpy (num2, n2->n_value, len2);
 | 
						|
    *(num2+len2) = 0;
 | 
						|
    n2ptr = num2;
 | 
						|
    while (*n2ptr == 0)
 | 
						|
    {
 | 
						|
        n2ptr++;
 | 
						|
        len2--;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Calculate the number of quotient digits. */
 | 
						|
    if (len2 > len1+scale)
 | 
						|
    {
 | 
						|
        qdigits = scale+1;
 | 
						|
        zero = TRUE;
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        zero = FALSE;
 | 
						|
        if (len2>len1)
 | 
						|
            qdigits = scale+1;  	/* One for the zero integer part. */
 | 
						|
        else
 | 
						|
            qdigits = len1-len2+scale+1;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Allocate and zero the storage for the quotient. */
 | 
						|
    qval = bc_new_num (qdigits-scale,scale);
 | 
						|
    memset (qval->n_value, 0, qdigits);
 | 
						|
 | 
						|
    /* Allocate storage for the temporary storage mval. */
 | 
						|
    mval = (unsigned char *) malloc (len2+1);
 | 
						|
    if (mval == NULL) bc_out_of_memory ();
 | 
						|
 | 
						|
    /* Now for the full divide algorithm. */
 | 
						|
    if (!zero)
 | 
						|
    {
 | 
						|
        /* Normalize */
 | 
						|
        norm =  10 / ((int)*n2ptr + 1);
 | 
						|
        if (norm != 1)
 | 
						|
	{
 | 
						|
            _one_mult (num1, len1+scale1+extra+1, norm, num1);
 | 
						|
            _one_mult (n2ptr, len2, norm, n2ptr);
 | 
						|
	}
 | 
						|
 | 
						|
        /* Initialize divide loop. */
 | 
						|
        qdig = 0;
 | 
						|
        if (len2 > len1)
 | 
						|
            qptr = (unsigned char *) qval->n_value+len2-len1;
 | 
						|
        else
 | 
						|
            qptr = (unsigned char *) qval->n_value;
 | 
						|
 | 
						|
        /* Loop */
 | 
						|
        while (qdig <= len1+scale-len2)
 | 
						|
	{
 | 
						|
            /* Calculate the quotient digit guess. */
 | 
						|
            if (*n2ptr == num1[qdig])
 | 
						|
                qguess = 9;
 | 
						|
            else
 | 
						|
                qguess = (num1[qdig]*10 + num1[qdig+1]) / *n2ptr;
 | 
						|
 | 
						|
            /* Test qguess. */
 | 
						|
            if (n2ptr[1]*qguess >
 | 
						|
                (num1[qdig]*10 + num1[qdig+1] - *n2ptr*qguess)*10
 | 
						|
                + num1[qdig+2])
 | 
						|
	    {
 | 
						|
                qguess--;
 | 
						|
                /* And again. */
 | 
						|
                if (n2ptr[1]*qguess >
 | 
						|
                    (num1[qdig]*10 + num1[qdig+1] - *n2ptr*qguess)*10
 | 
						|
                    + num1[qdig+2])
 | 
						|
                    qguess--;
 | 
						|
	    }
 | 
						|
 | 
						|
            /* Multiply and subtract. */
 | 
						|
            borrow = 0;
 | 
						|
            if (qguess != 0)
 | 
						|
	    {
 | 
						|
                *mval = 0;
 | 
						|
                _one_mult (n2ptr, len2, qguess, mval+1);
 | 
						|
                ptr1 = (unsigned char *) num1+qdig+len2;
 | 
						|
                ptr2 = (unsigned char *) mval+len2;
 | 
						|
                for (count = 0; count < len2+1; count++)
 | 
						|
		{
 | 
						|
                    val = (int) *ptr1 - (int) *ptr2-- - borrow;
 | 
						|
                    if (val < 0)
 | 
						|
		    {
 | 
						|
                        val += 10;
 | 
						|
                        borrow = 1;
 | 
						|
		    }
 | 
						|
                    else
 | 
						|
                        borrow = 0;
 | 
						|
                    *ptr1-- = val;
 | 
						|
		}
 | 
						|
	    }
 | 
						|
 | 
						|
            /* Test for negative result. */
 | 
						|
            if (borrow == 1)
 | 
						|
	    {
 | 
						|
                qguess--;
 | 
						|
                ptr1 = (unsigned char *) num1+qdig+len2;
 | 
						|
                ptr2 = (unsigned char *) n2ptr+len2-1;
 | 
						|
                carry = 0;
 | 
						|
                for (count = 0; count < len2; count++)
 | 
						|
		{
 | 
						|
                    val = (int) *ptr1 + (int) *ptr2-- + carry;
 | 
						|
                    if (val > 9)
 | 
						|
		    {
 | 
						|
                        val -= 10;
 | 
						|
                        carry = 1;
 | 
						|
		    }
 | 
						|
                    else
 | 
						|
                        carry = 0;
 | 
						|
                    *ptr1-- = val;
 | 
						|
		}
 | 
						|
                if (carry == 1) *ptr1 = (*ptr1 + 1) % 10;
 | 
						|
	    }
 | 
						|
 | 
						|
            /* We now know the quotient digit. */
 | 
						|
            *qptr++ =  qguess;
 | 
						|
            qdig++;
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
    /* Clean up and return the number. */
 | 
						|
    qval->n_sign = ( n1->n_sign == n2->n_sign ? PLUS : MINUS );
 | 
						|
    if (bc_is_zero (qval)) qval->n_sign = PLUS;
 | 
						|
    _bc_rm_leading_zeros (qval);
 | 
						|
    bc_free_num (quot);
 | 
						|
    *quot = qval;
 | 
						|
 | 
						|
    /* Clean up temporary storage. */
 | 
						|
    free (mval);
 | 
						|
    free (num1);
 | 
						|
    free (num2);
 | 
						|
 | 
						|
    return 0;	/* Everything is OK. */
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* Division *and* modulo for numbers.  This computes both NUM1 / NUM2 and
 | 
						|
   NUM1 % NUM2  and puts the results in QUOT and REM, except that if QUOT
 | 
						|
   is NULL then that store will be omitted.
 | 
						|
*/
 | 
						|
 | 
						|
int
 | 
						|
bc_divmod (num1, num2, quot, rem, scale)
 | 
						|
    bc_num num1, num2, *quot, *rem;
 | 
						|
int scale;
 | 
						|
{
 | 
						|
    bc_num quotient = NULL;
 | 
						|
    bc_num temp;
 | 
						|
    int rscale;
 | 
						|
 | 
						|
    /* Check for correct numbers. */
 | 
						|
    if (bc_is_zero (num2)) return -1;
 | 
						|
 | 
						|
    /* Calculate final scale. */
 | 
						|
    rscale = MAX (num1->n_scale, num2->n_scale+scale);
 | 
						|
    bc_init_num(&temp);
 | 
						|
 | 
						|
    /* Calculate it. */
 | 
						|
    bc_divide (num1, num2, &temp, scale);
 | 
						|
    if (quot)
 | 
						|
        quotient = bc_copy_num (temp);
 | 
						|
    bc_multiply (temp, num2, &temp, rscale);
 | 
						|
    bc_sub (num1, temp, rem, rscale);
 | 
						|
    bc_free_num (&temp);
 | 
						|
 | 
						|
    if (quot)
 | 
						|
    {
 | 
						|
        bc_free_num (quot);
 | 
						|
        *quot = quotient;
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;	/* Everything is OK. */
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* Modulo for numbers.  This computes NUM1 % NUM2  and puts the
 | 
						|
   result in RESULT.   */
 | 
						|
 | 
						|
int
 | 
						|
bc_modulo (num1, num2, result, scale)
 | 
						|
    bc_num num1, num2, *result;
 | 
						|
int scale;
 | 
						|
{
 | 
						|
    return bc_divmod (num1, num2, NULL, result, scale);
 | 
						|
}
 | 
						|
 | 
						|
/* Raise BASE to the EXPO power, reduced modulo MOD.  The result is
 | 
						|
   placed in RESULT.  If a EXPO is not an integer,
 | 
						|
   only the integer part is used.  */
 | 
						|
 | 
						|
int
 | 
						|
bc_raisemod (base, expo, mod, result, scale)
 | 
						|
    bc_num base, expo, mod, *result;
 | 
						|
int scale;
 | 
						|
{
 | 
						|
    bc_num power, exponent, parity, temp;
 | 
						|
    int rscale;
 | 
						|
 | 
						|
    /* Check for correct numbers. */
 | 
						|
    if (bc_is_zero(mod)) return -1;
 | 
						|
    if (bc_is_neg(expo)) return -1;
 | 
						|
 | 
						|
    /* Set initial values.  */
 | 
						|
    power = bc_copy_num (base);
 | 
						|
    exponent = bc_copy_num (expo);
 | 
						|
    temp = bc_copy_num (_one_);
 | 
						|
    bc_init_num(&parity);
 | 
						|
 | 
						|
    /* Check the base for scale digits. */
 | 
						|
    if (base->n_scale != 0)
 | 
						|
        bc_rt_warn ("non-zero scale in base");
 | 
						|
 | 
						|
    /* Check the exponent for scale digits. */
 | 
						|
    if (exponent->n_scale != 0)
 | 
						|
    {
 | 
						|
        bc_rt_warn ("non-zero scale in exponent");
 | 
						|
        bc_divide (exponent, _one_, &exponent, 0); /*truncate */
 | 
						|
    }
 | 
						|
 | 
						|
    /* Check the modulus for scale digits. */
 | 
						|
    if (mod->n_scale != 0)
 | 
						|
        bc_rt_warn ("non-zero scale in modulus");
 | 
						|
 | 
						|
    /* Do the calculation. */
 | 
						|
    rscale = MAX(scale, base->n_scale);
 | 
						|
    while ( !bc_is_zero(exponent) )
 | 
						|
    {
 | 
						|
        (void) bc_divmod (exponent, _two_, &exponent, &parity, 0);
 | 
						|
        if ( !bc_is_zero(parity) )
 | 
						|
	{
 | 
						|
            bc_multiply (temp, power, &temp, rscale);
 | 
						|
            (void) bc_modulo (temp, mod, &temp, scale);
 | 
						|
	}
 | 
						|
 | 
						|
        bc_multiply (power, power, &power, rscale);
 | 
						|
        (void) bc_modulo (power, mod, &power, scale);
 | 
						|
    }
 | 
						|
 | 
						|
    /* Assign the value. */
 | 
						|
    bc_free_num (&power);
 | 
						|
    bc_free_num (&exponent);
 | 
						|
    bc_free_num (result);
 | 
						|
    *result = temp;
 | 
						|
    return 0;	/* Everything is OK. */
 | 
						|
}
 | 
						|
 | 
						|
/* Raise NUM1 to the NUM2 power.  The result is placed in RESULT.
 | 
						|
   Maximum exponent is LONG_MAX.  If a NUM2 is not an integer,
 | 
						|
   only the integer part is used.  */
 | 
						|
 | 
						|
void
 | 
						|
bc_raise (num1, num2, result, scale)
 | 
						|
    bc_num num1, num2, *result;
 | 
						|
int scale;
 | 
						|
{
 | 
						|
    bc_num temp, power;
 | 
						|
    long exponent;
 | 
						|
    int rscale;
 | 
						|
    int pwrscale;
 | 
						|
    int calcscale;
 | 
						|
    char neg;
 | 
						|
 | 
						|
    /* Check the exponent for scale digits and convert to a long. */
 | 
						|
    if (num2->n_scale != 0)
 | 
						|
        bc_rt_warn ("non-zero scale in exponent");
 | 
						|
    exponent = bc_num2long (num2);
 | 
						|
    if (exponent == 0 && (num2->n_len > 1 || num2->n_value[0] != 0))
 | 
						|
        bc_rt_error ("exponent too large in raise");
 | 
						|
 | 
						|
    /* Special case if exponent is a zero. */
 | 
						|
    if (exponent == 0)
 | 
						|
    {
 | 
						|
        bc_free_num (result);
 | 
						|
        *result = bc_copy_num (_one_);
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Other initializations. */
 | 
						|
    if (exponent < 0)
 | 
						|
    {
 | 
						|
        neg = TRUE;
 | 
						|
        exponent = -exponent;
 | 
						|
        rscale = scale;
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        neg = FALSE;
 | 
						|
        rscale = MIN (num1->n_scale*exponent, MAX(scale, num1->n_scale));
 | 
						|
    }
 | 
						|
 | 
						|
    /* Set initial value of temp.  */
 | 
						|
    power = bc_copy_num (num1);
 | 
						|
    pwrscale = num1->n_scale;
 | 
						|
    while ((exponent & 1) == 0)
 | 
						|
    {
 | 
						|
        pwrscale = 2*pwrscale;
 | 
						|
        bc_multiply (power, power, &power, pwrscale);
 | 
						|
        exponent = exponent >> 1;
 | 
						|
    }
 | 
						|
    temp = bc_copy_num (power);
 | 
						|
    calcscale = pwrscale;
 | 
						|
    exponent = exponent >> 1;
 | 
						|
 | 
						|
    /* Do the calculation. */
 | 
						|
    while (exponent > 0)
 | 
						|
    {
 | 
						|
        pwrscale = 2*pwrscale;
 | 
						|
        bc_multiply (power, power, &power, pwrscale);
 | 
						|
        if ((exponent & 1) == 1) {
 | 
						|
            calcscale = pwrscale + calcscale;
 | 
						|
            bc_multiply (temp, power, &temp, calcscale);
 | 
						|
        }
 | 
						|
        exponent = exponent >> 1;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Assign the value. */
 | 
						|
    if (neg)
 | 
						|
    {
 | 
						|
        bc_divide (_one_, temp, result, rscale);
 | 
						|
        bc_free_num (&temp);
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        bc_free_num (result);
 | 
						|
        *result = temp;
 | 
						|
        if ((*result)->n_scale > rscale)
 | 
						|
            (*result)->n_scale = rscale;
 | 
						|
    }
 | 
						|
    bc_free_num (&power);
 | 
						|
}
 | 
						|
 | 
						|
/* Take the square root NUM and return it in NUM with SCALE digits
 | 
						|
   after the decimal place. */
 | 
						|
 | 
						|
int
 | 
						|
bc_sqrt (num, scale)
 | 
						|
bc_num *num;
 | 
						|
int scale;
 | 
						|
{
 | 
						|
    int rscale, cmp_res, done;
 | 
						|
    int cscale;
 | 
						|
    bc_num guess, guess1, point5, diff;
 | 
						|
 | 
						|
    /* Initial checks. */
 | 
						|
    cmp_res = bc_compare (*num, _zero_);
 | 
						|
    if (cmp_res < 0)
 | 
						|
        return 0;		/* error */
 | 
						|
    else
 | 
						|
    {
 | 
						|
        if (cmp_res == 0)
 | 
						|
	{
 | 
						|
            bc_free_num (num);
 | 
						|
            *num = bc_copy_num (_zero_);
 | 
						|
            return 1;
 | 
						|
	}
 | 
						|
    }
 | 
						|
    cmp_res = bc_compare (*num, _one_);
 | 
						|
    if (cmp_res == 0)
 | 
						|
    {
 | 
						|
        bc_free_num (num);
 | 
						|
        *num = bc_copy_num (_one_);
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Initialize the variables. */
 | 
						|
    rscale = MAX (scale, (*num)->n_scale);
 | 
						|
    bc_init_num(&guess);
 | 
						|
    bc_init_num(&guess1);
 | 
						|
    bc_init_num(&diff);
 | 
						|
    point5 = bc_new_num (1,1);
 | 
						|
    point5->n_value[1] = 5;
 | 
						|
 | 
						|
 | 
						|
    /* Calculate the initial guess. */
 | 
						|
    if (cmp_res < 0)
 | 
						|
    {
 | 
						|
        /* The number is between 0 and 1.  Guess should start at 1. */
 | 
						|
        guess = bc_copy_num (_one_);
 | 
						|
        cscale = (*num)->n_scale;
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        /* The number is greater than 1.  Guess should start at 10^(exp/2). */
 | 
						|
        bc_int2num (&guess,10);
 | 
						|
 | 
						|
        bc_int2num (&guess1,(*num)->n_len);
 | 
						|
        bc_multiply (guess1, point5, &guess1, 0);
 | 
						|
        guess1->n_scale = 0;
 | 
						|
        bc_raise (guess, guess1, &guess, 0);
 | 
						|
        bc_free_num (&guess1);
 | 
						|
        cscale = 3;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Find the square root using Newton's algorithm. */
 | 
						|
    done = FALSE;
 | 
						|
    while (!done)
 | 
						|
    {
 | 
						|
        bc_free_num (&guess1);
 | 
						|
        guess1 = bc_copy_num (guess);
 | 
						|
        bc_divide (*num, guess, &guess, cscale);
 | 
						|
        bc_add (guess, guess1, &guess, 0);
 | 
						|
        bc_multiply (guess, point5, &guess, cscale);
 | 
						|
        bc_sub (guess, guess1, &diff, cscale+1);
 | 
						|
        if (bc_is_near_zero (diff, cscale))
 | 
						|
	{
 | 
						|
            if (cscale < rscale+1)
 | 
						|
                cscale = MIN (cscale*3, rscale+1);
 | 
						|
            else
 | 
						|
                done = TRUE;
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
    /* Assign the number and clean up. */
 | 
						|
    bc_free_num (num);
 | 
						|
    bc_divide (guess,_one_,num,rscale);
 | 
						|
    bc_free_num (&guess);
 | 
						|
    bc_free_num (&guess1);
 | 
						|
    bc_free_num (&point5);
 | 
						|
    bc_free_num (&diff);
 | 
						|
    return 1;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* The following routines provide output for bcd numbers package
 | 
						|
   using the rules of POSIX bc for output. */
 | 
						|
 | 
						|
/* This structure is used for saving digits in the conversion process. */
 | 
						|
typedef struct stk_rec {
 | 
						|
    long  digit;
 | 
						|
    struct stk_rec *next;
 | 
						|
} stk_rec;
 | 
						|
 | 
						|
/* The reference string for digits. */
 | 
						|
static char ref_str[] = "0123456789ABCDEF";
 | 
						|
 | 
						|
 | 
						|
/* A special output routine for "multi-character digits."  Exactly
 | 
						|
   SIZE characters must be output for the value VAL.  If SPACE is
 | 
						|
   non-zero, we must output one space before the number.  OUT_CHAR
 | 
						|
   is the actual routine for writing the characters. */
 | 
						|
 | 
						|
void
 | 
						|
bc_out_long (val, size, space, out_char)
 | 
						|
long val;
 | 
						|
int size, space;
 | 
						|
#ifdef NUMBER__STDC__
 | 
						|
void (*out_char)(int);
 | 
						|
#else
 | 
						|
void (*out_char)();
 | 
						|
#endif
 | 
						|
{
 | 
						|
    char digits[40];
 | 
						|
    int len, ix;
 | 
						|
 | 
						|
    if (space) (*out_char) (' ');
 | 
						|
    sprintf (digits, "%ld", val);
 | 
						|
    len = strlen (digits);
 | 
						|
    while (size > len)
 | 
						|
    {
 | 
						|
        (*out_char) ('0');
 | 
						|
        size--;
 | 
						|
    }
 | 
						|
    for (ix=0; ix < len; ix++)
 | 
						|
        (*out_char) (digits[ix]);
 | 
						|
}
 | 
						|
 | 
						|
/* Output of a bcd number.  NUM is written in base O_BASE using OUT_CHAR
 | 
						|
   as the routine to do the actual output of the characters. */
 | 
						|
 | 
						|
void
 | 
						|
bc_out_num (num, o_base, out_char, leading_zero)
 | 
						|
bc_num num;
 | 
						|
int o_base;
 | 
						|
#ifdef NUMBER__STDC__
 | 
						|
void (*out_char)(int);
 | 
						|
#else
 | 
						|
void (*out_char)();
 | 
						|
#endif
 | 
						|
int leading_zero;
 | 
						|
{
 | 
						|
    char *nptr;
 | 
						|
    int  index, fdigit, pre_space;
 | 
						|
    stk_rec *digits, *temp;
 | 
						|
    bc_num int_part, frac_part, base, cur_dig, t_num, max_o_digit;
 | 
						|
 | 
						|
    /* The negative sign if needed. */
 | 
						|
    if (num->n_sign == MINUS) (*out_char) ('-');
 | 
						|
 | 
						|
    /* Output the number. */
 | 
						|
    if (bc_is_zero (num))
 | 
						|
        (*out_char) ('0');
 | 
						|
    else
 | 
						|
        if (o_base == 10)
 | 
						|
        {
 | 
						|
            /* The number is in base 10, do it the fast way. */
 | 
						|
            nptr = num->n_value;
 | 
						|
            if (num->n_len > 1 || *nptr != 0)
 | 
						|
                for (index=num->n_len; index>0; index--)
 | 
						|
                    (*out_char) (BCD_CHAR(*nptr++));
 | 
						|
            else
 | 
						|
                nptr++;
 | 
						|
 | 
						|
            if (leading_zero && bc_is_zero (num))
 | 
						|
                (*out_char) ('0');
 | 
						|
 | 
						|
            /* Now the fraction. */
 | 
						|
            if (num->n_scale > 0)
 | 
						|
            {
 | 
						|
                (*out_char) ('.');
 | 
						|
                for (index=0; index<num->n_scale; index++)
 | 
						|
                    (*out_char) (BCD_CHAR(*nptr++));
 | 
						|
            }
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            /* special case ... */
 | 
						|
            if (leading_zero && bc_is_zero (num))
 | 
						|
                (*out_char) ('0');
 | 
						|
 | 
						|
            /* The number is some other base. */
 | 
						|
            digits = NULL;
 | 
						|
            bc_init_num (&int_part);
 | 
						|
            bc_divide (num, _one_, &int_part, 0);
 | 
						|
            bc_init_num (&frac_part);
 | 
						|
            bc_init_num (&cur_dig);
 | 
						|
            bc_init_num (&base);
 | 
						|
            bc_sub (num, int_part, &frac_part, 0);
 | 
						|
            /* Make the INT_PART and FRAC_PART positive. */
 | 
						|
            int_part->n_sign = PLUS;
 | 
						|
            frac_part->n_sign = PLUS;
 | 
						|
            bc_int2num (&base, o_base);
 | 
						|
            bc_init_num (&max_o_digit);
 | 
						|
            bc_int2num (&max_o_digit, o_base-1);
 | 
						|
 | 
						|
 | 
						|
            /* Get the digits of the integer part and push them on a stack. */
 | 
						|
            while (!bc_is_zero (int_part))
 | 
						|
            {
 | 
						|
                bc_modulo (int_part, base, &cur_dig, 0);
 | 
						|
                temp = (stk_rec *) malloc (sizeof(stk_rec));
 | 
						|
                if (temp == NULL) bc_out_of_memory();
 | 
						|
                temp->digit = bc_num2long (cur_dig);
 | 
						|
                temp->next = digits;
 | 
						|
                digits = temp;
 | 
						|
                bc_divide (int_part, base, &int_part, 0);
 | 
						|
            }
 | 
						|
 | 
						|
            /* Print the digits on the stack. */
 | 
						|
            if (digits != NULL)
 | 
						|
            {
 | 
						|
                /* Output the digits. */
 | 
						|
                while (digits != NULL)
 | 
						|
                {
 | 
						|
                    temp = digits;
 | 
						|
                    digits = digits->next;
 | 
						|
                    if (o_base <= 16)
 | 
						|
                        (*out_char) (ref_str[ (int) temp->digit]);
 | 
						|
                    else
 | 
						|
                        bc_out_long (temp->digit, max_o_digit->n_len, 1, out_char);
 | 
						|
                    free (temp);
 | 
						|
                }
 | 
						|
            }
 | 
						|
 | 
						|
            /* Get and print the digits of the fraction part. */
 | 
						|
            if (num->n_scale > 0)
 | 
						|
            {
 | 
						|
                (*out_char) ('.');
 | 
						|
                pre_space = 0;
 | 
						|
                t_num = bc_copy_num (_one_);
 | 
						|
                while (t_num->n_len <= num->n_scale) {
 | 
						|
                    bc_multiply (frac_part, base, &frac_part, num->n_scale);
 | 
						|
                    fdigit = bc_num2long (frac_part);
 | 
						|
                    bc_int2num (&int_part, fdigit);
 | 
						|
                    bc_sub (frac_part, int_part, &frac_part, 0);
 | 
						|
                    if (o_base <= 16)
 | 
						|
                        (*out_char) (ref_str[fdigit]);
 | 
						|
                    else {
 | 
						|
                        bc_out_long (fdigit, max_o_digit->n_len, pre_space, out_char);
 | 
						|
                        pre_space = 1;
 | 
						|
                    }
 | 
						|
                    bc_multiply (t_num, base, &t_num, 0);
 | 
						|
                }
 | 
						|
                bc_free_num (&t_num);
 | 
						|
            }
 | 
						|
 | 
						|
            /* Clean up. */
 | 
						|
            bc_free_num (&int_part);
 | 
						|
            bc_free_num (&frac_part);
 | 
						|
            bc_free_num (&base);
 | 
						|
            bc_free_num (&cur_dig);
 | 
						|
            bc_free_num (&max_o_digit);
 | 
						|
        }
 | 
						|
}
 | 
						|
/* Convert a number NUM to a long.  The function returns only the integer
 | 
						|
   part of the number.  For numbers that are too large to represent as
 | 
						|
   a long, this function returns a zero.  This can be detected by checking
 | 
						|
   the NUM for zero after having a zero returned. */
 | 
						|
 | 
						|
long
 | 
						|
bc_num2long (num)
 | 
						|
bc_num num;
 | 
						|
{
 | 
						|
    long val;
 | 
						|
    char *nptr;
 | 
						|
    int  index;
 | 
						|
 | 
						|
    /* Extract the int value, ignore the fraction. */
 | 
						|
    val = 0;
 | 
						|
    nptr = num->n_value;
 | 
						|
    for (index=num->n_len; (index>0) && (val<=(LONG_MAX/BASE)); index--)
 | 
						|
        val = val*BASE + *nptr++;
 | 
						|
 | 
						|
    /* Check for overflow.  If overflow, return zero. */
 | 
						|
    if (index>0) val = 0;
 | 
						|
    if (val < 0) val = 0;
 | 
						|
 | 
						|
    /* Return the value. */
 | 
						|
    if (num->n_sign == PLUS)
 | 
						|
        return (val);
 | 
						|
    else
 | 
						|
        return (-val);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* Convert an integer VAL to a bc number NUM. */
 | 
						|
 | 
						|
void
 | 
						|
bc_int2num (num, val)
 | 
						|
bc_num *num;
 | 
						|
int val;
 | 
						|
{
 | 
						|
    char buffer[30];
 | 
						|
    char *bptr, *vptr;
 | 
						|
    int  ix = 1;
 | 
						|
    char neg = 0;
 | 
						|
 | 
						|
    /* Sign. */
 | 
						|
    if (val < 0)
 | 
						|
    {
 | 
						|
        neg = 1;
 | 
						|
        val = -val;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Get things going. */
 | 
						|
    bptr = buffer;
 | 
						|
    *bptr++ = val % BASE;
 | 
						|
    val = val / BASE;
 | 
						|
 | 
						|
    /* Extract remaining digits. */
 | 
						|
    while (val != 0)
 | 
						|
    {
 | 
						|
        *bptr++ = val % BASE;
 | 
						|
        val = val / BASE;
 | 
						|
        ix++; 		/* Count the digits. */
 | 
						|
    }
 | 
						|
 | 
						|
    /* Make the number. */
 | 
						|
    bc_free_num (num);
 | 
						|
    *num = bc_new_num (ix, 0);
 | 
						|
    if (neg) (*num)->n_sign = MINUS;
 | 
						|
 | 
						|
    /* Assign the digits. */
 | 
						|
    vptr = (*num)->n_value;
 | 
						|
    while (ix-- > 0)
 | 
						|
        *vptr++ = *--bptr;
 | 
						|
}
 | 
						|
 | 
						|
/* Convert a numbers to a string.  Base 10 only.*/
 | 
						|
 | 
						|
char
 | 
						|
*bc_num2str (num)
 | 
						|
bc_num num;
 | 
						|
{
 | 
						|
    char *str, *sptr;
 | 
						|
    char *nptr;
 | 
						|
    int  index, signch;
 | 
						|
 | 
						|
    /* Allocate the string memory. */
 | 
						|
    signch = ( num->n_sign == PLUS ? 0 : 1 );  /* Number of sign chars. */
 | 
						|
    if (num->n_scale > 0)
 | 
						|
        str = (char *) malloc (num->n_len + num->n_scale + 2 + signch);
 | 
						|
    else
 | 
						|
        str = (char *) malloc (num->n_len + 1 + signch);
 | 
						|
    if (str == NULL) bc_out_of_memory();
 | 
						|
 | 
						|
    /* The negative sign if needed. */
 | 
						|
    sptr = str;
 | 
						|
    if (signch) *sptr++ = '-';
 | 
						|
 | 
						|
    /* Load the whole number. */
 | 
						|
    nptr = num->n_value;
 | 
						|
    for (index=num->n_len; index>0; index--)
 | 
						|
        *sptr++ = BCD_CHAR(*nptr++);
 | 
						|
 | 
						|
    /* Now the fraction. */
 | 
						|
    if (num->n_scale > 0)
 | 
						|
    {
 | 
						|
        *sptr++ = '.';
 | 
						|
        for (index=0; index<num->n_scale; index++)
 | 
						|
            *sptr++ = BCD_CHAR(*nptr++);
 | 
						|
    }
 | 
						|
 | 
						|
    /* Terminate the string and return it! */
 | 
						|
    *sptr = '\0';
 | 
						|
    return (str);
 | 
						|
}
 | 
						|
/* Convert strings to bc numbers.  Base 10 only.*/
 | 
						|
 | 
						|
void
 | 
						|
bc_str2num (num, str, scale)
 | 
						|
bc_num *num;
 | 
						|
char *str;
 | 
						|
int scale;
 | 
						|
{
 | 
						|
    int digits, strscale;
 | 
						|
    char *ptr, *nptr;
 | 
						|
    char zero_int;
 | 
						|
 | 
						|
    /* Prepare num. */
 | 
						|
    bc_free_num (num);
 | 
						|
 | 
						|
    /* Check for valid number and count digits. */
 | 
						|
    ptr = str;
 | 
						|
    digits = 0;
 | 
						|
    strscale = 0;
 | 
						|
    zero_int = FALSE;
 | 
						|
    if ( (*ptr == '+') || (*ptr == '-'))  ptr++;  /* Sign */
 | 
						|
    while (*ptr == '0') ptr++;			/* Skip leading zeros. */
 | 
						|
    while (isdigit((int)*ptr)) ptr++, digits++;	/* digits */
 | 
						|
    if (*ptr == '.') ptr++;			/* decimal point */
 | 
						|
    while (isdigit((int)*ptr)) ptr++, strscale++;	/* digits */
 | 
						|
    if ((*ptr != '\0') || (digits+strscale == 0))
 | 
						|
    {
 | 
						|
        *num = bc_copy_num (_zero_);
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Adjust numbers and allocate storage and initialize fields. */
 | 
						|
    strscale = MIN(strscale, scale);
 | 
						|
    if (digits == 0)
 | 
						|
    {
 | 
						|
        zero_int = TRUE;
 | 
						|
        digits = 1;
 | 
						|
    }
 | 
						|
    *num = bc_new_num (digits, strscale);
 | 
						|
 | 
						|
    /* Build the whole number. */
 | 
						|
    ptr = str;
 | 
						|
    if (*ptr == '-')
 | 
						|
    {
 | 
						|
        (*num)->n_sign = MINUS;
 | 
						|
        ptr++;
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        (*num)->n_sign = PLUS;
 | 
						|
        if (*ptr == '+') ptr++;
 | 
						|
    }
 | 
						|
    while (*ptr == '0') ptr++;			/* Skip leading zeros. */
 | 
						|
    nptr = (*num)->n_value;
 | 
						|
    if (zero_int)
 | 
						|
    {
 | 
						|
        *nptr++ = 0;
 | 
						|
        digits = 0;
 | 
						|
    }
 | 
						|
    for (;digits > 0; digits--)
 | 
						|
        *nptr++ = CH_VAL(*ptr++);
 | 
						|
 | 
						|
 | 
						|
    /* Build the fractional part. */
 | 
						|
    if (strscale > 0)
 | 
						|
    {
 | 
						|
        ptr++;  /* skip the decimal point! */
 | 
						|
        for (;strscale > 0; strscale--)
 | 
						|
            *nptr++ = CH_VAL(*ptr++);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* pn prints the number NUM in base 10. */
 | 
						|
 | 
						|
static void
 | 
						|
out_char (int c)
 | 
						|
{
 | 
						|
    putchar(c);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void
 | 
						|
pn (num)
 | 
						|
bc_num num;
 | 
						|
{
 | 
						|
    bc_out_num (num, 10, out_char, 0);
 | 
						|
    out_char ('\n');
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* pv prints a character array as if it was a string of bcd digits. */
 | 
						|
void
 | 
						|
pv (name, num, len)
 | 
						|
char *name;
 | 
						|
unsigned char *num;
 | 
						|
int len;
 | 
						|
{
 | 
						|
    int i;
 | 
						|
    printf ("%s=", name);
 | 
						|
    for (i=0; i<len; i++) printf ("%c",BCD_CHAR(num[i]));
 | 
						|
    printf ("\n");
 | 
						|
}
 |