You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

344 lines
10 KiB
Python

import math
import os
from viz import renderer
import torch
from torch import optim
from torch.nn import functional as F
from torchvision import transforms
from PIL import Image
from tqdm import tqdm
import dataclasses
import dnnlib
from .lpips import util
import imageio
def get_lr(t, initial_lr, rampdown=0.25, rampup=0.05):
lr_ramp = min(1, (1 - t) / rampdown)
lr_ramp = 0.5 - 0.5 * math.cos(lr_ramp * math.pi)
lr_ramp = lr_ramp * min(1, t / rampup)
return initial_lr * lr_ramp
def make_image(tensor):
return (
tensor.detach()
.clamp_(min=-1, max=1)
.add(1)
.div_(2)
.mul(255)
.type(torch.uint8)
.permute(0, 2, 3, 1)
.to("cpu")
.numpy()
)
@dataclasses.dataclass
class InverseConfig:
lr_warmup = 0.05
lr_decay = 0.25
lr = 0.1
noise = 0.05
noise_decay = 0.75
step = 1000
noise_regularize = 1e5
mse = 0.1
def inverse_image(
g_ema,
image,
percept,
image_size=256,
w_plus = False,
config=InverseConfig(),
device='cuda:0'
):
args = config
n_mean_latent = 10000
resize = min(image_size, 256)
if torch.is_tensor(image)==False:
transform = transforms.Compose(
[
transforms.Resize(resize,),
transforms.CenterCrop(resize),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
]
)
img = transform(image)
else:
img = transforms.functional.resize(image,resize)
transform = transforms.Compose(
[
transforms.CenterCrop(resize),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
]
)
img = transform(img)
imgs = []
imgs.append(img)
imgs = torch.stack(imgs, 0).to(device)
with torch.no_grad():
#noise_sample = torch.randn(n_mean_latent, 512, device=device)
noise_sample = torch.randn(n_mean_latent, g_ema.z_dim, device=device)
#label = torch.zeros([n_mean_latent,g_ema.c_dim],device = device)
w_samples = g_ema.mapping(noise_sample,None)
w_samples = w_samples[:, :1, :]
w_avg = w_samples.mean(0)
w_std = ((w_samples - w_avg).pow(2).sum() / n_mean_latent) ** 0.5
noises = {name: buf for (name, buf) in g_ema.synthesis.named_buffers() if 'noise_const' in name}
for noise in noises.values():
noise = torch.randn_like(noise)
noise.requires_grad = True
w_opt = w_avg.detach().clone()
if w_plus:
w_opt = w_opt.repeat(1,g_ema.mapping.num_ws, 1)
w_opt.requires_grad = True
#if args.w_plus:
#latent_in = latent_in.unsqueeze(1).repeat(1, g_ema.n_latent, 1)
optimizer = optim.Adam([w_opt] + list(noises.values()), lr=args.lr)
pbar = tqdm(range(args.step))
latent_path = []
for i in pbar:
t = i / args.step
lr = get_lr(t, args.lr)
optimizer.param_groups[0]["lr"] = lr
noise_strength = w_std * args.noise * max(0, 1 - t / args.noise_decay) ** 2
w_noise = torch.randn_like(w_opt) * noise_strength
if w_plus:
ws = w_opt + w_noise
else:
ws = (w_opt + w_noise).repeat([1, g_ema.mapping.num_ws, 1])
img_gen = g_ema.synthesis(ws, noise_mode='const', force_fp32=True)
#latent_n = latent_noise(latent_in, noise_strength.item())
#latent, noise = g_ema.prepare([latent_n], input_is_latent=True, noise=noises)
#img_gen, F = g_ema.generate(latent, noise)
# Downsample image to 256x256 if it's larger than that. VGG was built for 224x224 images.
if img_gen.shape[2] > 256:
img_gen = F.interpolate(img_gen, size=(256, 256), mode='area')
p_loss = percept(img_gen,imgs)
# Noise regularization.
reg_loss = 0.0
for v in noises.values():
noise = v[None, None, :, :] # must be [1,1,H,W] for F.avg_pool2d()
while True:
reg_loss += (noise * torch.roll(noise, shifts=1, dims=3)).mean() ** 2
reg_loss += (noise * torch.roll(noise, shifts=1, dims=2)).mean() ** 2
if noise.shape[2] <= 8:
break
noise = F.avg_pool2d(noise, kernel_size=2)
mse_loss = F.mse_loss(img_gen, imgs)
loss = p_loss + args.noise_regularize * reg_loss + args.mse * mse_loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Normalize noise.
with torch.no_grad():
for buf in noises.values():
buf -= buf.mean()
buf *= buf.square().mean().rsqrt()
if (i + 1) % 100 == 0:
latent_path.append(w_opt.detach().clone())
pbar.set_description(
(
f"perceptual: {p_loss.item():.4f}; noise regularize: {reg_loss:.4f};"
f" mse: {mse_loss.item():.4f}; lr: {lr:.4f}"
)
)
#latent, noise = g_ema.prepare([latent_path[-1]], input_is_latent=True, noise=noises)
#img_gen, F = g_ema.generate(latent, noise)
if w_plus:
ws = latent_path[-1]
else:
ws = latent_path[-1].repeat([1, g_ema.mapping.num_ws, 1])
img_gen = g_ema.synthesis(ws, noise_mode='const')
result = {
"latent": latent_path[-1],
"sample": img_gen,
"real": imgs,
}
return result
def toogle_grad(model, flag=True):
for p in model.parameters():
p.requires_grad = flag
class PTI:
def __init__(self,G, percept, l2_lambda = 1,max_pti_step = 400, pti_lr = 3e-4 ):
self.g_ema = G
self.l2_lambda = l2_lambda
self.max_pti_step = max_pti_step
self.pti_lr = pti_lr
self.percept = percept
def cacl_loss(self,percept, generated_image,real_image):
mse_loss = F.mse_loss(generated_image, real_image)
p_loss = percept(generated_image, real_image).sum()
loss = p_loss +self.l2_lambda * mse_loss
return loss
def train(self,img,w_plus=False):
if torch.is_tensor(img) == False:
transform = transforms.Compose(
[
transforms.Resize(self.g_ema.img_resolution, ),
transforms.CenterCrop(self.g_ema.img_resolution),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
]
)
real_img = transform(img).to('cuda').unsqueeze(0)
else:
img = transforms.functional.resize(img, self.g_ema.img_resolution)
transform = transforms.Compose(
[
transforms.CenterCrop(self.g_ema.img_resolution),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
]
)
real_img = transform(img).to('cuda').unsqueeze(0)
inversed_result = inverse_image(self.g_ema,img,self.percept,self.g_ema.img_resolution,w_plus)
w_pivot = inversed_result['latent']
if w_plus:
ws = w_pivot
else:
ws = w_pivot.repeat([1, self.g_ema.mapping.num_ws, 1])
toogle_grad(self.g_ema,True)
optimizer = torch.optim.Adam(self.g_ema.parameters(), lr=self.pti_lr)
print('start PTI')
pbar = tqdm(range(self.max_pti_step))
for i in pbar:
t = i / self.max_pti_step
lr = get_lr(t, self.pti_lr)
optimizer.param_groups[0]["lr"] = lr
generated_image = self.g_ema.synthesis(ws,noise_mode='const')
loss = self.cacl_loss(self.percept,generated_image,real_img)
pbar.set_description(
(
f"loss: {loss.item():.4f}"
)
)
optimizer.zero_grad()
loss.backward()
optimizer.step()
with torch.no_grad():
generated_image = self.g_ema.synthesis(ws, noise_mode='const')
return generated_image,ws
if __name__ == "__main__":
state = {
"images": {
# image_orig: the original image, change with seed/model is changed
# image_raw: image with mask and points, change durning optimization
# image_show: image showed on screen
},
"temporal_params": {
# stop
},
'mask':
None, # mask for visualization, 1 for editing and 0 for unchange
'last_mask': None, # last edited mask
'show_mask': True, # add button
"generator_params": dnnlib.EasyDict(),
"params": {
"seed": 0,
"motion_lambda": 20,
"r1_in_pixels": 3,
"r2_in_pixels": 12,
"magnitude_direction_in_pixels": 1.0,
"latent_space": "w+",
"trunc_psi": 0.7,
"trunc_cutoff": None,
"lr": 0.001,
},
"device": 'cuda:0',
"draw_interval": 1,
"renderer": renderer.Renderer(disable_timing=True),
"points": {},
"curr_point": None,
"curr_type_point": "start",
'editing_state': 'add_points',
'pretrained_weight': 'stylegan2_horses_256_pytorch'
}
cache_dir = '../checkpoints'
valid_checkpoints_dict = {
f.split('/')[-1].split('.')[0]: os.path.join(cache_dir, f)
for f in os.listdir(cache_dir)
if (f.endswith('pkl') and os.path.exists(os.path.join(cache_dir, f)))
}
state['renderer'].init_network(state['generator_params'], # res
valid_checkpoints_dict[state['pretrained_weight']], # pkl
state['params']['seed'], # w0_seed,
None, # w_load
state['params']['latent_space'] == 'w+', # w_plus
'const',
state['params']['trunc_psi'], # trunc_psi,
state['params']['trunc_cutoff'], # trunc_cutoff,
None, # input_transform
state['params']['lr'] # lr
)
image = Image.open('/home/tianhao/research/drag3d/horse/render/0.png')
G = state['renderer'].G
#result = inverse_image(G,image,G.img_resolution)
percept = util.PerceptualLoss(
model="net-lin", net="vgg", use_gpu=True
)
pti = PTI(G,percept)
result = pti.train(image,True)
imageio.imsave('../horse/test.png', make_image(result[0])[0])