mirror of https://github.com/XingangPan/DragGAN
				
				
				
			
			You cannot select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
	
	
		
			53 lines
		
	
	
		
			1.8 KiB
		
	
	
	
		
			Python
		
	
			
		
		
	
	
			53 lines
		
	
	
		
			1.8 KiB
		
	
	
	
		
			Python
		
	
# Copyright (c) SenseTime Research. All rights reserved.
 | 
						|
 | 
						|
from random import choice
 | 
						|
from string import ascii_uppercase
 | 
						|
from torch.utils.data import DataLoader
 | 
						|
from torchvision.transforms import transforms
 | 
						|
import os
 | 
						|
from pti.pti_configs import global_config, paths_config
 | 
						|
import wandb
 | 
						|
 | 
						|
from pti.training.coaches.multi_id_coach import MultiIDCoach
 | 
						|
from pti.training.coaches.single_id_coach import SingleIDCoach
 | 
						|
from utils.ImagesDataset import ImagesDataset
 | 
						|
 | 
						|
 | 
						|
def run_PTI(run_name='', use_wandb=False, use_multi_id_training=False):
 | 
						|
    os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
 | 
						|
    os.environ['CUDA_VISIBLE_DEVICES'] = global_config.cuda_visible_devices
 | 
						|
 | 
						|
    if run_name == '':
 | 
						|
        global_config.run_name = ''.join(choice(ascii_uppercase) for i in range(12))
 | 
						|
    else:
 | 
						|
        global_config.run_name = run_name
 | 
						|
 | 
						|
    if use_wandb:
 | 
						|
        run = wandb.init(project=paths_config.pti_results_keyword, reinit=True, name=global_config.run_name)
 | 
						|
    global_config.pivotal_training_steps = 1
 | 
						|
    global_config.training_step = 1
 | 
						|
 | 
						|
    embedding_dir_path = f'{paths_config.embedding_base_dir}/{paths_config.input_data_id}/{paths_config.pti_results_keyword}'
 | 
						|
    # print('embedding_dir_path: ', embedding_dir_path) #./embeddings/barcelona/PTI 
 | 
						|
    os.makedirs(embedding_dir_path, exist_ok=True)
 | 
						|
 | 
						|
    dataset = ImagesDataset(paths_config.input_data_path, transforms.Compose([
 | 
						|
        transforms.Resize((1024, 512)),
 | 
						|
        transforms.ToTensor(),
 | 
						|
        transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]))
 | 
						|
 | 
						|
    dataloader = DataLoader(dataset, batch_size=1, shuffle=False)
 | 
						|
 | 
						|
    if use_multi_id_training:
 | 
						|
        coach = MultiIDCoach(dataloader, use_wandb)
 | 
						|
    else:
 | 
						|
        coach = SingleIDCoach(dataloader, use_wandb)
 | 
						|
 | 
						|
    coach.train()
 | 
						|
 | 
						|
    return global_config.run_name
 | 
						|
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    run_PTI(run_name='', use_wandb=False, use_multi_id_training=False)
 |