mirror of https://github.com/XingangPan/DragGAN
You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
139 lines
5.8 KiB
Markdown
139 lines
5.8 KiB
Markdown
<p align="center">
|
|
|
|
<h1 align="center">Drag Your GAN: Interactive Point-based Manipulation on the Generative Image Manifold</h1>
|
|
<p align="center">
|
|
<a href="https://xingangpan.github.io/"><strong>Xingang Pan</strong></a>
|
|
·
|
|
<a href="https://ayushtewari.com/"><strong>Ayush Tewari</strong></a>
|
|
·
|
|
<a href="https://people.mpi-inf.mpg.de/~tleimkue/"><strong>Thomas Leimkühler</strong></a>
|
|
·
|
|
<a href="https://lingjie0206.github.io/"><strong>Lingjie Liu</strong></a>
|
|
·
|
|
<a href="https://www.meka.page/"><strong>Abhimitra Meka</strong></a>
|
|
·
|
|
<a href="http://www.mpi-inf.mpg.de/~theobalt/"><strong>Christian Theobalt</strong></a>
|
|
</p>
|
|
<h2 align="center">SIGGRAPH 2023 Conference Proceedings</h2>
|
|
<div align="center">
|
|
<img src="DragGAN.gif", width="600">
|
|
</div>
|
|
|
|
<p align="center">
|
|
<br>
|
|
<a href="https://pytorch.org/get-started/locally/"><img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-ee4c2c?logo=pytorch&logoColor=white"></a>
|
|
<a href="https://twitter.com/XingangP"><img alt='Twitter' src="https://img.shields.io/twitter/follow/XingangP?label=%40XingangP"></a>
|
|
<a href="https://arxiv.org/abs/2305.10973">
|
|
<img src='https://img.shields.io/badge/Paper-PDF-green?style=for-the-badge&logo=adobeacrobatreader&logoWidth=20&logoColor=white&labelColor=66cc00&color=94DD15' alt='Paper PDF'>
|
|
</a>
|
|
<a href='https://vcai.mpi-inf.mpg.de/projects/DragGAN/'>
|
|
<img src='https://img.shields.io/badge/DragGAN-Page-orange?style=for-the-badge&logo=Google%20chrome&logoColor=white&labelColor=D35400' alt='Project Page'></a>
|
|
<a href="https://colab.research.google.com/drive/1mey-IXPwQC_qSthI5hO-LTX7QL4ivtPh?usp=sharing"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
|
|
</p>
|
|
</p>
|
|
|
|
## Web Demos
|
|
|
|
[](https://openxlab.org.cn/apps/detail/XingangPan/DragGAN)
|
|
|
|
<p align="left">
|
|
<a href="https://huggingface.co/spaces/radames/DragGan"><img alt="Huggingface" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-DragGAN-orange"></a>
|
|
</p>
|
|
|
|
## Requirements
|
|
|
|
If you have CUDA graphic card, please follow the requirements of [NVlabs/stylegan3](https://github.com/NVlabs/stylegan3#requirements).
|
|
|
|
The usual installation steps involve the following commands, they should set up the correct CUDA version and all the python packages
|
|
|
|
```
|
|
conda env create -f environment.yml
|
|
conda activate stylegan3
|
|
```
|
|
|
|
Then install the additional requirements
|
|
|
|
```
|
|
pip install -r requirements.txt
|
|
```
|
|
|
|
Otherwise (for GPU acceleration on MacOS with Silicon Mac M1/M2, or just CPU) try the following:
|
|
|
|
```sh
|
|
cat environment.yml | \
|
|
grep -v -E 'nvidia|cuda' > environment-no-nvidia.yml && \
|
|
conda env create -f environment-no-nvidia.yml
|
|
conda activate stylegan3
|
|
|
|
# On MacOS
|
|
export PYTORCH_ENABLE_MPS_FALLBACK=1
|
|
```
|
|
|
|
## Run Gradio visualizer in Docker
|
|
|
|
Provided docker image is based on NGC PyTorch repository. To quickly try out visualizer in Docker, run the following:
|
|
|
|
```sh
|
|
# before you build the docker container, make sure you have cloned this repo, and downloaded the pretrained model by `python scripts/download_model.py`.
|
|
docker build . -t draggan:latest
|
|
docker run -p 7860:7860 -v "$PWD":/workspace/src -it draggan:latest bash
|
|
# (Use GPU)if you want to utilize your Nvidia gpu to accelerate in docker, please add command tag `--gpus all`, like:
|
|
# docker run --gpus all -p 7860:7860 -v "$PWD":/workspace/src -it draggan:latest bash
|
|
|
|
cd src && python visualizer_drag_gradio.py --listen
|
|
```
|
|
Now you can open a shared link from Gradio (printed in the terminal console).
|
|
Beware the Docker image takes about 25GB of disk space!
|
|
|
|
## Download pre-trained StyleGAN2 weights
|
|
|
|
To download pre-trained weights, simply run:
|
|
|
|
```
|
|
python scripts/download_model.py
|
|
```
|
|
If you want to try StyleGAN-Human and the Landscapes HQ (LHQ) dataset, please download weights from these links: [StyleGAN-Human](https://drive.google.com/file/d/1dlFEHbu-WzQWJl7nBBZYcTyo000H9hVm/view?usp=sharing), [LHQ](https://drive.google.com/file/d/16twEf0T9QINAEoMsWefoWiyhcTd-aiWc/view?usp=sharing), and put them under `./checkpoints`.
|
|
|
|
Feel free to try other pretrained StyleGAN.
|
|
|
|
## Run DragGAN GUI
|
|
|
|
To start the DragGAN GUI, simply run:
|
|
```sh
|
|
sh scripts/gui.sh
|
|
```
|
|
If you are using windows, you can run:
|
|
```
|
|
.\scripts\gui.bat
|
|
```
|
|
|
|
This GUI supports editing GAN-generated images. To edit a real image, you need to first perform GAN inversion using tools like [PTI](https://github.com/danielroich/PTI). Then load the new latent code and model weights to the GUI.
|
|
|
|
You can run DragGAN Gradio demo as well, this is universal for both windows and linux:
|
|
```sh
|
|
python visualizer_drag_gradio.py
|
|
```
|
|
|
|
## Acknowledgement
|
|
|
|
This code is developed based on [StyleGAN3](https://github.com/NVlabs/stylegan3). Part of the code is borrowed from [StyleGAN-Human](https://github.com/stylegan-human/StyleGAN-Human).
|
|
|
|
(cheers to the community as well)
|
|
## License
|
|
|
|
The code related to the DragGAN algorithm is licensed under [CC-BY-NC](https://creativecommons.org/licenses/by-nc/4.0/).
|
|
However, most of this project are available under a separate license terms: all codes used or modified from [StyleGAN3](https://github.com/NVlabs/stylegan3) is under the [Nvidia Source Code License](https://github.com/NVlabs/stylegan3/blob/main/LICENSE.txt).
|
|
|
|
Any form of use and derivative of this code must preserve the watermarking functionality showing "AI Generated".
|
|
|
|
## BibTeX
|
|
|
|
```bibtex
|
|
@inproceedings{pan2023draggan,
|
|
title={Drag Your GAN: Interactive Point-based Manipulation on the Generative Image Manifold},
|
|
author={Pan, Xingang and Tewari, Ayush, and Leimk{\"u}hler, Thomas and Liu, Lingjie and Meka, Abhimitra and Theobalt, Christian},
|
|
booktitle = {ACM SIGGRAPH 2023 Conference Proceedings},
|
|
year={2023}
|
|
}
|
|
```
|