Merge branch 'main' into main

pull/127/head
Omar Irfan Khan 2 years ago committed by GitHub
commit 9ae9bc4c6d
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -0,0 +1,27 @@
FROM nvcr.io/nvidia/pytorch:23.05-py3
ENV PYTHONDONTWRITEBYTECODE 1
ENV PYTHONUNBUFFERED 1
RUN apt-get update && apt-get install -y --no-install-recommends \
make \
pkgconf \
xz-utils \
xorg-dev \
libgl1-mesa-dev \
libglu1-mesa-dev \
libxrandr-dev \
libxinerama-dev \
libxcursor-dev \
libxi-dev \
libxxf86vm-dev
RUN pip install --upgrade pip
COPY requirements.txt requirements.txt
RUN pip install -r requirements.txt
WORKDIR /workspace
RUN (printf '#!/bin/bash\nexec \"$@\"\n' >> /entry.sh) && chmod a+x /entry.sh
ENTRYPOINT ["/entry.sh"]

@ -47,7 +47,7 @@ If you have CUDA graphic card, please follow the requirements of [NVlabs/stylega
The usual installation steps involve the following commands, they should set up the correct CUDA version and all the python packages
```
conda env create python=3.7 -f environment.yml
conda env create -f environment.yml
conda activate stylegan3
```
@ -64,6 +64,19 @@ cat environment.yml | \
grep -v -E 'nvidia|cuda' > environment-no-nvidia.yml && \
conda env create -f environment-no-nvidia.yml
conda activate stylegan3
```
## Run Gradio visualizer in Docker
Provided docker image is based on NGC PyTorch repository. To quickly try out visualizer in Docker, run the following:
```sh
docker build . -t draggan:latest
docker run -v "$PWD":/workspace/src -it draggan:latest bash
cd src && python visualizer_drag_gradio.py
```
Now you can open a shared link from Gradio (printed in the terminal console).
Beware the Docker image takes about 25GB of disk space!
# On MacOS
export PYTORCH_ENABLE_MPS_FALLBACK=1
@ -75,6 +88,10 @@ To download pre-trained weights, simply run:
```sh
sh scripts/download_model.sh
```
Or for windows:
```
.\scripts\download_model.bat
```
If you want to try StyleGAN-Human and the Landscapes HQ (LHQ) dataset, please download weights from these links: [StyleGAN-Human](https://drive.google.com/file/d/1dlFEHbu-WzQWJl7nBBZYcTyo000H9hVm/view?usp=sharing), [LHQ](https://drive.google.com/file/d/16twEf0T9QINAEoMsWefoWiyhcTd-aiWc/view?usp=sharing), and put them under `./checkpoints`.
Feel free to try other pretrained StyleGAN.
@ -85,10 +102,14 @@ To start the DragGAN GUI, simply run:
```sh
sh scripts/gui.sh
```
If you are using windows, you can run:
```
.\scripts\gui.bat
```
This GUI supports editing GAN-generated images. To edit a real image, you need to first perform GAN inversion using tools like [PTI](https://github.com/danielroich/PTI). Then load the new latent code and model weights to the GUI.
You can run DragGAN Gradio demo as well:
You can run DragGAN Gradio demo as well, this is universal for both windows and linux:
```sh
python visualizer_drag_gradio.py
```
@ -97,6 +118,7 @@ python visualizer_drag_gradio.py
This code is developed based on [StyleGAN3](https://github.com/NVlabs/stylegan3). Part of the code is borrowed from [StyleGAN-Human](https://github.com/stylegan-human/StyleGAN-Human).
(cheers to the community as well)
## License
The code related to the DragGAN algorithm is licensed under [CC-BY-NC](https://creativecommons.org/licenses/by-nc/4.0/).

@ -3,8 +3,16 @@ torch
torchvision
Ninja
gradio
torch>=2.0.0
scipy==1.11.0
Ninja==1.10.2
gradio>=3.35.2
imageio-ffmpeg>=0.4.3
huggingface_hub
hf_transfer
pyopengl
imgui
glfw
glfw==2.6.1
pillow>=9.4.0
torchvision>=0.15.2
imageio>=2.9.0

Loading…
Cancel
Save