You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Android_boot_image_editor/aosp/avb/avbtool.v1.1.py

5767 lines
224 KiB
Python

#!/usr/bin/env python2
# Copyright 2016, The Android Open Source Project
#
# Permission is hereby granted, free of charge, to any person
# obtaining a copy of this software and associated documentation
# files (the "Software"), to deal in the Software without
# restriction, including without limitation the rights to use, copy,
# modify, merge, publish, distribute, sublicense, and/or sell copies
# of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be
# included in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#
"""Command-line tool for working with Android Verified Boot images."""
from __future__ import print_function
import argparse
import binascii
import bisect
import hashlib
import math
import os
import struct
import subprocess
import sys
import tempfile
import time
# Keep in sync with libavb/avb_version.h.
AVB_VERSION_MAJOR = 1
AVB_VERSION_MINOR = 1
AVB_VERSION_SUB = 0
# Keep in sync with libavb/avb_footer.h.
AVB_FOOTER_VERSION_MAJOR = 1
AVB_FOOTER_VERSION_MINOR = 0
AVB_VBMETA_IMAGE_FLAGS_HASHTREE_DISABLED = 1
class AvbError(Exception):
"""Application-specific errors.
These errors represent issues for which a stack-trace should not be
presented.
Attributes:
message: Error message.
"""
def __init__(self, message):
Exception.__init__(self, message)
class Algorithm(object):
"""Contains details about an algorithm.
See the avb_vbmeta_image.h file for more details about algorithms.
The constant |ALGORITHMS| is a dictionary from human-readable
names (e.g 'SHA256_RSA2048') to instances of this class.
Attributes:
algorithm_type: Integer code corresponding to |AvbAlgorithmType|.
hash_name: Empty or a name from |hashlib.algorithms|.
hash_num_bytes: Number of bytes used to store the hash.
signature_num_bytes: Number of bytes used to store the signature.
public_key_num_bytes: Number of bytes used to store the public key.
padding: Padding used for signature, if any.
"""
def __init__(self, algorithm_type, hash_name, hash_num_bytes,
signature_num_bytes, public_key_num_bytes, padding):
self.algorithm_type = algorithm_type
self.hash_name = hash_name
self.hash_num_bytes = hash_num_bytes
self.signature_num_bytes = signature_num_bytes
self.public_key_num_bytes = public_key_num_bytes
self.padding = padding
# This must be kept in sync with the avb_crypto.h file.
#
# The PKC1-v1.5 padding is a blob of binary DER of ASN.1 and is
# obtained from section 5.2.2 of RFC 4880.
ALGORITHMS = {
'NONE': Algorithm(
algorithm_type=0, # AVB_ALGORITHM_TYPE_NONE
hash_name='',
hash_num_bytes=0,
signature_num_bytes=0,
public_key_num_bytes=0,
padding=[]),
'SHA256_RSA2048': Algorithm(
algorithm_type=1, # AVB_ALGORITHM_TYPE_SHA256_RSA2048
hash_name='sha256',
hash_num_bytes=32,
signature_num_bytes=256,
public_key_num_bytes=8 + 2*2048//8,
padding=[
# PKCS1-v1_5 padding
0x00, 0x01] + [0xff]*202 + [0x00] + [
# ASN.1 header
0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86,
0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 0x05,
0x00, 0x04, 0x20,
]),
'SHA256_RSA4096': Algorithm(
algorithm_type=2, # AVB_ALGORITHM_TYPE_SHA256_RSA4096
hash_name='sha256',
hash_num_bytes=32,
signature_num_bytes=512,
public_key_num_bytes=8 + 2*4096//8,
padding=[
# PKCS1-v1_5 padding
0x00, 0x01] + [0xff]*458 + [0x00] + [
# ASN.1 header
0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86,
0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 0x05,
0x00, 0x04, 0x20,
]),
'SHA256_RSA8192': Algorithm(
algorithm_type=3, # AVB_ALGORITHM_TYPE_SHA256_RSA8192
hash_name='sha256',
hash_num_bytes=32,
signature_num_bytes=1024,
public_key_num_bytes=8 + 2*8192//8,
padding=[
# PKCS1-v1_5 padding
0x00, 0x01] + [0xff]*970 + [0x00] + [
# ASN.1 header
0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86,
0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 0x05,
0x00, 0x04, 0x20,
]),
'SHA512_RSA2048': Algorithm(
algorithm_type=4, # AVB_ALGORITHM_TYPE_SHA512_RSA2048
hash_name='sha512',
hash_num_bytes=64,
signature_num_bytes=256,
public_key_num_bytes=8 + 2*2048//8,
padding=[
# PKCS1-v1_5 padding
0x00, 0x01] + [0xff]*170 + [0x00] + [
# ASN.1 header
0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86,
0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03, 0x05,
0x00, 0x04, 0x40
]),
'SHA512_RSA4096': Algorithm(
algorithm_type=5, # AVB_ALGORITHM_TYPE_SHA512_RSA4096
hash_name='sha512',
hash_num_bytes=64,
signature_num_bytes=512,
public_key_num_bytes=8 + 2*4096//8,
padding=[
# PKCS1-v1_5 padding
0x00, 0x01] + [0xff]*426 + [0x00] + [
# ASN.1 header
0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86,
0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03, 0x05,
0x00, 0x04, 0x40
]),
'SHA512_RSA8192': Algorithm(
algorithm_type=6, # AVB_ALGORITHM_TYPE_SHA512_RSA8192
hash_name='sha512',
hash_num_bytes=64,
signature_num_bytes=1024,
public_key_num_bytes=8 + 2*8192//8,
padding=[
# PKCS1-v1_5 padding
0x00, 0x01] + [0xff]*938 + [0x00] + [
# ASN.1 header
0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86,
0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03, 0x05,
0x00, 0x04, 0x40
]),
}
def get_release_string():
"""Calculates the release string to use in the VBMeta struct."""
# Keep in sync with libavb/avb_version.c:avb_version_string().
return 'avbtool {}.{}.{}'.format(AVB_VERSION_MAJOR,
AVB_VERSION_MINOR,
AVB_VERSION_SUB)
def round_to_multiple(number, size):
"""Rounds a number up to nearest multiple of another number.
Arguments:
number: The number to round up.
size: The multiple to round up to.
Returns:
If |number| is a multiple of |size|, returns |number|, otherwise
returns |number| + |size|.
"""
remainder = number % size
if remainder == 0:
return number
return number + size - remainder
def round_to_pow2(number):
"""Rounds a number up to the next power of 2.
Arguments:
number: The number to round up.
Returns:
If |number| is already a power of 2 then |number| is
returned. Otherwise the smallest power of 2 greater than |number|
is returned.
"""
return 2**((number - 1).bit_length())
def encode_long(num_bits, value):
"""Encodes a long to a bytearray() using a given amount of bits.
This number is written big-endian, e.g. with the most significant
bit first.
This is the reverse of decode_long().
Arguments:
num_bits: The number of bits to write, e.g. 2048.
value: The value to write.
Returns:
A bytearray() with the encoded long.
"""
ret = bytearray()
for bit_pos in range(num_bits, 0, -8):
octet = (value >> (bit_pos - 8)) & 0xff
ret.extend(struct.pack('!B', octet))
return ret
def decode_long(blob):
"""Decodes a long from a bytearray() using a given amount of bits.
This number is expected to be in big-endian, e.g. with the most
significant bit first.
This is the reverse of encode_long().
Arguments:
blob: A bytearray() with the encoded long.
Returns:
The decoded value.
"""
ret = 0
for b in bytearray(blob):
ret *= 256
ret += b
return ret
def egcd(a, b):
"""Calculate greatest common divisor of two numbers.
This implementation uses a recursive version of the extended
Euclidian algorithm.
Arguments:
a: First number.
b: Second number.
Returns:
A tuple (gcd, x, y) that where |gcd| is the greatest common
divisor of |a| and |b| and |a|*|x| + |b|*|y| = |gcd|.
"""
if a == 0:
return (b, 0, 1)
g, y, x = egcd(b % a, a)
return (g, x - (b // a) * y, y)
def modinv(a, m):
"""Calculate modular multiplicative inverse of |a| modulo |m|.
This calculates the number |x| such that |a| * |x| == 1 (modulo
|m|). This number only exists if |a| and |m| are co-prime - |None|
is returned if this isn't true.
Arguments:
a: The number to calculate a modular inverse of.
m: The modulo to use.
Returns:
The modular multiplicative inverse of |a| and |m| or |None| if
these numbers are not co-prime.
"""
gcd, x, _ = egcd(a, m)
if gcd != 1:
return None # modular inverse does not exist
return x % m
def parse_number(string):
"""Parse a string as a number.
This is just a short-hand for int(string, 0) suitable for use in the
|type| parameter of |ArgumentParser|'s add_argument() function. An
improvement to just using type=int is that this function supports
numbers in other bases, e.g. "0x1234".
Arguments:
string: The string to parse.
Returns:
The parsed integer.
Raises:
ValueError: If the number could not be parsed.
"""
return int(string, 0)
class RSAPublicKey(object):
"""Data structure used for a RSA public key.
Attributes:
exponent: The key exponent.
modulus: The key modulus.
num_bits: The key size.
"""
MODULUS_PREFIX = 'modulus='
def __init__(self, key_path):
"""Loads and parses an RSA key from either a private or public key file.
Arguments:
key_path: The path to a key file.
Raises:
AvbError: If RSA key parameters could not be read from file.
"""
# We used to have something as simple as this:
#
# key = Crypto.PublicKey.RSA.importKey(open(key_path).read())
# self.exponent = key.e
# self.modulus = key.n
# self.num_bits = key.size() + 1
#
# but unfortunately PyCrypto is not available in the builder. So
# instead just parse openssl(1) output to get this
# information. It's ugly but...
args = ['openssl', 'rsa', '-in', key_path, '-modulus', '-noout']
p = subprocess.Popen(args,
stdin=subprocess.PIPE,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE)
(pout, perr) = p.communicate()
if p.wait() != 0:
# Could be just a public key is passed, try that.
args.append('-pubin')
p = subprocess.Popen(args,
stdin=subprocess.PIPE,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE)
(pout, perr) = p.communicate()
if p.wait() != 0:
raise AvbError('Error getting public key: {}'.format(perr))
if not pout.lower().startswith(self.MODULUS_PREFIX):
raise AvbError('Unexpected modulus output')
modulus_hexstr = pout[len(self.MODULUS_PREFIX):]
# The exponent is assumed to always be 65537 and the number of
# bits can be derived from the modulus by rounding up to the
# nearest power of 2.
self.modulus = int(modulus_hexstr, 16)
self.num_bits = round_to_pow2(int(math.ceil(math.log(self.modulus, 2))))
self.exponent = 65537
# TODO(danielaustin): Should this be moved into the RSAPublicKey class?
def rsa_key_read_pem_bytes(key_path):
"""Reads the bytes out of the passed in PEM file.
Arguments:
key_path: A string containing the path to the PEM file.
Returns:
A bytearray containing the bytes in the PEM file.
Raises:
AvbError: If openssl cannot decode the PEM file.
"""
# Use openssl to decode the PEM file.
args = ['openssl', 'rsa', '-in', key_path, '-pubout', '-outform', 'DER']
p = subprocess.Popen(args,
stdin=subprocess.PIPE,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE)
(pout, perr) = p.communicate()
retcode = p.wait()
if retcode != 0:
raise AvbError('Error decoding: {}'.format(perr))
return bytearray(pout)
def encode_rsa_key(key_path):
"""Encodes a public RSA key in |AvbRSAPublicKeyHeader| format.
This creates a |AvbRSAPublicKeyHeader| as well as the two large
numbers (|key_num_bits| bits long) following it.
Arguments:
key_path: The path to a key file.
Returns:
A bytearray() with the |AvbRSAPublicKeyHeader|.
Raises:
AvbError: If given RSA key exponent is not 65537.
"""
key = RSAPublicKey(key_path)
if key.exponent != 65537:
raise AvbError('Only RSA keys with exponent 65537 are supported.')
ret = bytearray()
# Calculate n0inv = -1/n[0] (mod 2^32)
b = 2L**32 # pylint: disable=long-suffix
n0inv = b - modinv(key.modulus, b)
# Calculate rr = r^2 (mod N), where r = 2^(# of key bits)
r = 2L**key.modulus.bit_length() # pylint: disable=long-suffix
rrmodn = r * r % key.modulus
ret.extend(struct.pack('!II', key.num_bits, n0inv))
ret.extend(encode_long(key.num_bits, key.modulus))
ret.extend(encode_long(key.num_bits, rrmodn))
return ret
def lookup_algorithm_by_type(alg_type):
"""Looks up algorithm by type.
Arguments:
alg_type: The integer representing the type.
Returns:
A tuple with the algorithm name and an |Algorithm| instance.
Raises:
Exception: If the algorithm cannot be found
"""
for alg_name in ALGORITHMS:
alg_data = ALGORITHMS[alg_name]
if alg_data.algorithm_type == alg_type:
return (alg_name, alg_data)
raise AvbError('Unknown algorithm type {}'.format(alg_type))
def lookup_hash_size_by_type(alg_type):
"""Looks up hash size by type.
Arguments:
alg_type: The integer representing the type.
Returns:
The corresponding hash size.
Raises:
AvbError: If the algorithm cannot be found.
"""
for alg_name in ALGORITHMS:
alg_data = ALGORITHMS[alg_name]
if alg_data.algorithm_type == alg_type:
return alg_data.hash_num_bytes
raise AvbError('Unsupported algorithm type {}'.format(alg_type))
def raw_sign(signing_helper, signing_helper_with_files,
algorithm_name, signature_num_bytes, key_path,
raw_data_to_sign):
"""Computes a raw RSA signature using |signing_helper| or openssl.
Arguments:
signing_helper: Program which signs a hash and returns the signature.
signing_helper_with_files: Same as signing_helper but uses files instead.
algorithm_name: The algorithm name as per the ALGORITHMS dict.
signature_num_bytes: Number of bytes used to store the signature.
key_path: Path to the private key file. Must be PEM format.
raw_data_to_sign: Data to sign (bytearray or str expected).
Returns:
A bytearray containing the signature.
Raises:
Exception: If an error occurs.
"""
p = None
if signing_helper_with_files is not None:
signing_file = tempfile.NamedTemporaryFile()
signing_file.write(str(raw_data_to_sign))
signing_file.flush()
p = subprocess.Popen([
signing_helper_with_files, algorithm_name, key_path, signing_file.name])
retcode = p.wait()
if retcode != 0:
raise AvbError('Error signing')
signing_file.seek(0)
signature = bytearray(signing_file.read())
else:
if signing_helper is not None:
p = subprocess.Popen(
[signing_helper, algorithm_name, key_path],
stdin=subprocess.PIPE,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE)
else:
p = subprocess.Popen(
['openssl', 'rsautl', '-sign', '-inkey', key_path, '-raw'],
stdin=subprocess.PIPE,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE)
(pout, perr) = p.communicate(str(raw_data_to_sign))
retcode = p.wait()
if retcode != 0:
raise AvbError('Error signing: {}'.format(perr))
signature = bytearray(pout)
if len(signature) != signature_num_bytes:
raise AvbError('Error signing: Invalid length of signature')
return signature
def verify_vbmeta_signature(vbmeta_header, vbmeta_blob):
"""Checks that signature in a vbmeta blob was made by the embedded public key.
Arguments:
vbmeta_header: A AvbVBMetaHeader.
vbmeta_blob: The whole vbmeta blob, including the header.
Returns:
True if the signature is valid and corresponds to the embedded
public key. Also returns True if the vbmeta blob is not signed.
Raises:
AvbError: If there errors calling out to openssl command during
signature verification.
"""
(_, alg) = lookup_algorithm_by_type(vbmeta_header.algorithm_type)
if not alg.hash_name:
return True
header_blob = vbmeta_blob[0:256]
auth_offset = 256
aux_offset = auth_offset + vbmeta_header.authentication_data_block_size
aux_size = vbmeta_header.auxiliary_data_block_size
aux_blob = vbmeta_blob[aux_offset:aux_offset + aux_size]
pubkey_offset = aux_offset + vbmeta_header.public_key_offset
pubkey_size = vbmeta_header.public_key_size
pubkey_blob = vbmeta_blob[pubkey_offset:pubkey_offset + pubkey_size]
digest_offset = auth_offset + vbmeta_header.hash_offset
digest_size = vbmeta_header.hash_size
digest_blob = vbmeta_blob[digest_offset:digest_offset + digest_size]
sig_offset = auth_offset + vbmeta_header.signature_offset
sig_size = vbmeta_header.signature_size
sig_blob = vbmeta_blob[sig_offset:sig_offset + sig_size]
# Now that we've got the stored digest, public key, and signature
# all we need to do is to verify. This is the exactly the same
# steps as performed in the avb_vbmeta_image_verify() function in
# libavb/avb_vbmeta_image.c.
ha = hashlib.new(alg.hash_name)
ha.update(header_blob)
ha.update(aux_blob)
computed_digest = ha.digest()
if computed_digest != digest_blob:
return False
padding_and_digest = bytearray(alg.padding)
padding_and_digest.extend(computed_digest)
(num_bits,) = struct.unpack('!I', pubkey_blob[0:4])
modulus_blob = pubkey_blob[8:8 + num_bits//8]
modulus = decode_long(modulus_blob)
exponent = 65537
# We used to have this:
#
# import Crypto.PublicKey.RSA
# key = Crypto.PublicKey.RSA.construct((modulus, long(exponent)))
# if not key.verify(decode_long(padding_and_digest),
# (decode_long(sig_blob), None)):
# return False
# return True
#
# but since 'avbtool verify_image' is used on the builders we don't want
# to rely on Crypto.PublicKey.RSA. Instead just use openssl(1) to verify.
asn1_str = ('asn1=SEQUENCE:pubkeyinfo\n'
'\n'
'[pubkeyinfo]\n'
'algorithm=SEQUENCE:rsa_alg\n'
'pubkey=BITWRAP,SEQUENCE:rsapubkey\n'
'\n'
'[rsa_alg]\n'
'algorithm=OID:rsaEncryption\n'
'parameter=NULL\n'
'\n'
'[rsapubkey]\n'
'n=INTEGER:%s\n'
'e=INTEGER:%s\n' % (hex(modulus).rstrip('L'),
hex(exponent).rstrip('L')))
asn1_tmpfile = tempfile.NamedTemporaryFile()
asn1_tmpfile.write(asn1_str)
asn1_tmpfile.flush()
der_tmpfile = tempfile.NamedTemporaryFile()
p = subprocess.Popen(
['openssl', 'asn1parse', '-genconf', asn1_tmpfile.name, '-out',
der_tmpfile.name, '-noout'])
retcode = p.wait()
if retcode != 0:
raise AvbError('Error generating DER file')
p = subprocess.Popen(
['openssl', 'rsautl', '-verify', '-pubin', '-inkey', der_tmpfile.name,
'-keyform', 'DER', '-raw'],
stdin=subprocess.PIPE,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE)
(pout, perr) = p.communicate(str(sig_blob))
retcode = p.wait()
if retcode != 0:
raise AvbError('Error verifying data: {}'.format(perr))
recovered_data = bytearray(pout)
if recovered_data != padding_and_digest:
sys.stderr.write('Signature not correct\n')
return False
return True
class ImageChunk(object):
"""Data structure used for representing chunks in Android sparse files.
Attributes:
chunk_type: One of TYPE_RAW, TYPE_FILL, or TYPE_DONT_CARE.
chunk_offset: Offset in the sparse file where this chunk begins.
output_offset: Offset in de-sparsified file where output begins.
output_size: Number of bytes in output.
input_offset: Offset in sparse file for data if TYPE_RAW otherwise None.
fill_data: Blob with data to fill if TYPE_FILL otherwise None.
"""
FORMAT = '<2H2I'
TYPE_RAW = 0xcac1
TYPE_FILL = 0xcac2
TYPE_DONT_CARE = 0xcac3
TYPE_CRC32 = 0xcac4
def __init__(self, chunk_type, chunk_offset, output_offset, output_size,
input_offset, fill_data):
"""Initializes an ImageChunk object.
Arguments:
chunk_type: One of TYPE_RAW, TYPE_FILL, or TYPE_DONT_CARE.
chunk_offset: Offset in the sparse file where this chunk begins.
output_offset: Offset in de-sparsified file.
output_size: Number of bytes in output.
input_offset: Offset in sparse file if TYPE_RAW otherwise None.
fill_data: Blob with data to fill if TYPE_FILL otherwise None.
Raises:
ValueError: If data is not well-formed.
"""
self.chunk_type = chunk_type
self.chunk_offset = chunk_offset
self.output_offset = output_offset
self.output_size = output_size
self.input_offset = input_offset
self.fill_data = fill_data
# Check invariants.
if self.chunk_type == self.TYPE_RAW:
if self.fill_data is not None:
raise ValueError('RAW chunk cannot have fill_data set.')
if not self.input_offset:
raise ValueError('RAW chunk must have input_offset set.')
elif self.chunk_type == self.TYPE_FILL:
if self.fill_data is None:
raise ValueError('FILL chunk must have fill_data set.')
if self.input_offset:
raise ValueError('FILL chunk cannot have input_offset set.')
elif self.chunk_type == self.TYPE_DONT_CARE:
if self.fill_data is not None:
raise ValueError('DONT_CARE chunk cannot have fill_data set.')
if self.input_offset:
raise ValueError('DONT_CARE chunk cannot have input_offset set.')
else:
raise ValueError('Invalid chunk type')
class ImageHandler(object):
"""Abstraction for image I/O with support for Android sparse images.
This class provides an interface for working with image files that
may be using the Android Sparse Image format. When an instance is
constructed, we test whether it's an Android sparse file. If so,
operations will be on the sparse file by interpreting the sparse
format, otherwise they will be directly on the file. Either way the
operations do the same.
For reading, this interface mimics a file object - it has seek(),
tell(), and read() methods. For writing, only truncation
(truncate()) and appending is supported (append_raw() and
append_dont_care()). Additionally, data can only be written in units
of the block size.
Attributes:
filename: Name of file.
is_sparse: Whether the file being operated on is sparse.
block_size: The block size, typically 4096.
image_size: The size of the unsparsified file.
"""
# See system/core/libsparse/sparse_format.h for details.
MAGIC = 0xed26ff3a
HEADER_FORMAT = '<I4H4I'
# These are formats and offset of just the |total_chunks| and
# |total_blocks| fields.
NUM_CHUNKS_AND_BLOCKS_FORMAT = '<II'
NUM_CHUNKS_AND_BLOCKS_OFFSET = 16
def __init__(self, image_filename):
"""Initializes an image handler.
Arguments:
image_filename: The name of the file to operate on.
Raises:
ValueError: If data in the file is invalid.
"""
self.filename = image_filename
self._num_total_blocks = 0
self._num_total_chunks = 0
self._file_pos = 0
self._read_header()
def _read_header(self):
"""Initializes internal data structures used for reading file.
This may be called multiple times and is typically called after
modifying the file (e.g. appending, truncation).
Raises:
ValueError: If data in the file is invalid.
"""
self.is_sparse = False
self.block_size = 4096
self._file_pos = 0
self._image = open(self.filename, 'r+b')
self._image.seek(0, os.SEEK_END)
self.image_size = self._image.tell()
self._image.seek(0, os.SEEK_SET)
header_bin = self._image.read(struct.calcsize(self.HEADER_FORMAT))
(magic, major_version, minor_version, file_hdr_sz, chunk_hdr_sz,
block_size, self._num_total_blocks, self._num_total_chunks,
_) = struct.unpack(self.HEADER_FORMAT, header_bin)
if magic != self.MAGIC:
# Not a sparse image, our job here is done.
return
if not (major_version == 1 and minor_version == 0):
raise ValueError('Encountered sparse image format version {}.{} but '
'only 1.0 is supported'.format(major_version,
minor_version))
if file_hdr_sz != struct.calcsize(self.HEADER_FORMAT):
raise ValueError('Unexpected file_hdr_sz value {}.'.
format(file_hdr_sz))
if chunk_hdr_sz != struct.calcsize(ImageChunk.FORMAT):
raise ValueError('Unexpected chunk_hdr_sz value {}.'.
format(chunk_hdr_sz))
self.block_size = block_size
# Build an list of chunks by parsing the file.
self._chunks = []
# Find the smallest offset where only "Don't care" chunks
# follow. This will be the size of the content in the sparse
# image.
offset = 0
output_offset = 0
for _ in range(1, self._num_total_chunks + 1):
chunk_offset = self._image.tell()
header_bin = self._image.read(struct.calcsize(ImageChunk.FORMAT))
(chunk_type, _, chunk_sz, total_sz) = struct.unpack(ImageChunk.FORMAT,
header_bin)
data_sz = total_sz - struct.calcsize(ImageChunk.FORMAT)
if chunk_type == ImageChunk.TYPE_RAW:
if data_sz != (chunk_sz * self.block_size):
raise ValueError('Raw chunk input size ({}) does not match output '
'size ({})'.
format(data_sz, chunk_sz*self.block_size))
self._chunks.append(ImageChunk(ImageChunk.TYPE_RAW,
chunk_offset,
output_offset,
chunk_sz*self.block_size,
self._image.tell(),
None))
self._image.seek(data_sz, os.SEEK_CUR)
elif chunk_type == ImageChunk.TYPE_FILL:
if data_sz != 4:
raise ValueError('Fill chunk should have 4 bytes of fill, but this '
'has {}'.format(data_sz))
fill_data = self._image.read(4)
self._chunks.append(ImageChunk(ImageChunk.TYPE_FILL,
chunk_offset,
output_offset,
chunk_sz*self.block_size,
None,
fill_data))
elif chunk_type == ImageChunk.TYPE_DONT_CARE:
if data_sz != 0:
raise ValueError('Don\'t care chunk input size is non-zero ({})'.
format(data_sz))
self._chunks.append(ImageChunk(ImageChunk.TYPE_DONT_CARE,
chunk_offset,
output_offset,
chunk_sz*self.block_size,
None,
None))
elif chunk_type == ImageChunk.TYPE_CRC32:
if data_sz != 4:
raise ValueError('CRC32 chunk should have 4 bytes of CRC, but '
'this has {}'.format(data_sz))
self._image.read(4)
else:
raise ValueError('Unknown chunk type {}'.format(chunk_type))
offset += chunk_sz
output_offset += chunk_sz*self.block_size
# Record where sparse data end.
self._sparse_end = self._image.tell()
# Now that we've traversed all chunks, sanity check.
if self._num_total_blocks != offset:
raise ValueError('The header said we should have {} output blocks, '
'but we saw {}'.format(self._num_total_blocks, offset))
junk_len = len(self._image.read())
if junk_len > 0:
raise ValueError('There were {} bytes of extra data at the end of the '
'file.'.format(junk_len))
# Assign |image_size|.
self.image_size = output_offset
# This is used when bisecting in read() to find the initial slice.
self._chunk_output_offsets = [i.output_offset for i in self._chunks]
self.is_sparse = True
def _update_chunks_and_blocks(self):
"""Helper function to update the image header.
The the |total_chunks| and |total_blocks| fields in the header
will be set to value of the |_num_total_blocks| and
|_num_total_chunks| attributes.
"""
self._image.seek(self.NUM_CHUNKS_AND_BLOCKS_OFFSET, os.SEEK_SET)
self._image.write(struct.pack(self.NUM_CHUNKS_AND_BLOCKS_FORMAT,
self._num_total_blocks,
self._num_total_chunks))
def append_dont_care(self, num_bytes):
"""Appends a DONT_CARE chunk to the sparse file.
The given number of bytes must be a multiple of the block size.
Arguments:
num_bytes: Size in number of bytes of the DONT_CARE chunk.
"""
assert num_bytes % self.block_size == 0
if not self.is_sparse:
self._image.seek(0, os.SEEK_END)
# This is more efficient that writing NUL bytes since it'll add
# a hole on file systems that support sparse files (native
# sparse, not Android sparse).
self._image.truncate(self._image.tell() + num_bytes)
self._read_header()
return
self._num_total_chunks += 1
self._num_total_blocks += num_bytes // self.block_size
self._update_chunks_and_blocks()
self._image.seek(self._sparse_end, os.SEEK_SET)
self._image.write(struct.pack(ImageChunk.FORMAT,
ImageChunk.TYPE_DONT_CARE,
0, # Reserved
num_bytes // self.block_size,
struct.calcsize(ImageChunk.FORMAT)))
self._read_header()
def append_raw(self, data):
"""Appends a RAW chunk to the sparse file.
The length of the given data must be a multiple of the block size.
Arguments:
data: Data to append.
"""
assert len(data) % self.block_size == 0
if not self.is_sparse:
self._image.seek(0, os.SEEK_END)
self._image.write(data)
self._read_header()
return
self._num_total_chunks += 1
self._num_total_blocks += len(data) // self.block_size
self._update_chunks_and_blocks()
self._image.seek(self._sparse_end, os.SEEK_SET)
self._image.write(struct.pack(ImageChunk.FORMAT,
ImageChunk.TYPE_RAW,
0, # Reserved
len(data) // self.block_size,
len(data) +
struct.calcsize(ImageChunk.FORMAT)))
self._image.write(data)
self._read_header()
def append_fill(self, fill_data, size):
"""Appends a fill chunk to the sparse file.
The total length of the fill data must be a multiple of the block size.
Arguments:
fill_data: Fill data to append - must be four bytes.
size: Number of chunk - must be a multiple of four and the block size.
"""
assert len(fill_data) == 4
assert size % 4 == 0
assert size % self.block_size == 0
if not self.is_sparse:
self._image.seek(0, os.SEEK_END)
self._image.write(fill_data * (size//4))
self._read_header()
return
self._num_total_chunks += 1
self._num_total_blocks += size // self.block_size
self._update_chunks_and_blocks()
self._image.seek(self._sparse_end, os.SEEK_SET)
self._image.write(struct.pack(ImageChunk.FORMAT,
ImageChunk.TYPE_FILL,
0, # Reserved
size // self.block_size,
4 + struct.calcsize(ImageChunk.FORMAT)))
self._image.write(fill_data)
self._read_header()
def seek(self, offset):
"""Sets the cursor position for reading from unsparsified file.
Arguments:
offset: Offset to seek to from the beginning of the file.
Raises:
RuntimeError: If the given offset is negative.
"""
if offset < 0:
raise RuntimeError('Seeking with negative offset: %d' % offset)
self._file_pos = offset
def read(self, size):
"""Reads data from the unsparsified file.
This method may return fewer than |size| bytes of data if the end
of the file was encountered.
The file cursor for reading is advanced by the number of bytes
read.
Arguments:
size: Number of bytes to read.
Returns:
The data.
"""
if not self.is_sparse:
self._image.seek(self._file_pos)
data = self._image.read(size)
self._file_pos += len(data)
return data
# Iterate over all chunks.
chunk_idx = bisect.bisect_right(self._chunk_output_offsets,
self._file_pos) - 1
data = bytearray()
to_go = size
while to_go > 0:
chunk = self._chunks[chunk_idx]
chunk_pos_offset = self._file_pos - chunk.output_offset
chunk_pos_to_go = min(chunk.output_size - chunk_pos_offset, to_go)
if chunk.chunk_type == ImageChunk.TYPE_RAW:
self._image.seek(chunk.input_offset + chunk_pos_offset)
data.extend(self._image.read(chunk_pos_to_go))
elif chunk.chunk_type == ImageChunk.TYPE_FILL:
all_data = chunk.fill_data*(chunk_pos_to_go // len(chunk.fill_data) + 2)
offset_mod = chunk_pos_offset % len(chunk.fill_data)
data.extend(all_data[offset_mod:(offset_mod + chunk_pos_to_go)])
else:
assert chunk.chunk_type == ImageChunk.TYPE_DONT_CARE
data.extend('\0' * chunk_pos_to_go)
to_go -= chunk_pos_to_go
self._file_pos += chunk_pos_to_go
chunk_idx += 1
# Generate partial read in case of EOF.
if chunk_idx >= len(self._chunks):
break
return data
def tell(self):
"""Returns the file cursor position for reading from unsparsified file.
Returns:
The file cursor position for reading.
"""
return self._file_pos
def truncate(self, size):
"""Truncates the unsparsified file.
Arguments:
size: Desired size of unsparsified file.
Raises:
ValueError: If desired size isn't a multiple of the block size.
"""
if not self.is_sparse:
self._image.truncate(size)
self._read_header()
return
if size % self.block_size != 0:
raise ValueError('Cannot truncate to a size which is not a multiple '
'of the block size')
if size == self.image_size:
# Trivial where there's nothing to do.
return
elif size < self.image_size:
chunk_idx = bisect.bisect_right(self._chunk_output_offsets, size) - 1
chunk = self._chunks[chunk_idx]
if chunk.output_offset != size:
# Truncation in the middle of a trunk - need to keep the chunk
# and modify it.
chunk_idx_for_update = chunk_idx + 1
num_to_keep = size - chunk.output_offset
assert num_to_keep % self.block_size == 0
if chunk.chunk_type == ImageChunk.TYPE_RAW:
truncate_at = (chunk.chunk_offset +
struct.calcsize(ImageChunk.FORMAT) + num_to_keep)
data_sz = num_to_keep
elif chunk.chunk_type == ImageChunk.TYPE_FILL:
truncate_at = (chunk.chunk_offset +
struct.calcsize(ImageChunk.FORMAT) + 4)
data_sz = 4
else:
assert chunk.chunk_type == ImageChunk.TYPE_DONT_CARE
truncate_at = chunk.chunk_offset + struct.calcsize(ImageChunk.FORMAT)
data_sz = 0
chunk_sz = num_to_keep // self.block_size
total_sz = data_sz + struct.calcsize(ImageChunk.FORMAT)
self._image.seek(chunk.chunk_offset)
self._image.write(struct.pack(ImageChunk.FORMAT,
chunk.chunk_type,
0, # Reserved
chunk_sz,
total_sz))
chunk.output_size = num_to_keep
else:
# Truncation at trunk boundary.
truncate_at = chunk.chunk_offset
chunk_idx_for_update = chunk_idx
self._num_total_chunks = chunk_idx_for_update
self._num_total_blocks = 0
for i in range(0, chunk_idx_for_update):
self._num_total_blocks += self._chunks[i].output_size // self.block_size
self._update_chunks_and_blocks()
self._image.truncate(truncate_at)
# We've modified the file so re-read all data.
self._read_header()
else:
# Truncating to grow - just add a DONT_CARE section.
self.append_dont_care(size - self.image_size)
class AvbDescriptor(object):
"""Class for AVB descriptor.
See the |AvbDescriptor| C struct for more information.
Attributes:
tag: The tag identifying what kind of descriptor this is.
data: The data in the descriptor.
"""
SIZE = 16
FORMAT_STRING = ('!QQ') # tag, num_bytes_following (descriptor header)
def __init__(self, data):
"""Initializes a new property descriptor.
Arguments:
data: If not None, must be a bytearray().
Raises:
LookupError: If the given descriptor is malformed.
"""
assert struct.calcsize(self.FORMAT_STRING) == self.SIZE
if data:
(self.tag, num_bytes_following) = (
struct.unpack(self.FORMAT_STRING, data[0:self.SIZE]))
self.data = data[self.SIZE:self.SIZE + num_bytes_following]
else:
self.tag = None
self.data = None
def print_desc(self, o):
"""Print the descriptor.
Arguments:
o: The object to write the output to.
"""
o.write(' Unknown descriptor:\n')
o.write(' Tag: {}\n'.format(self.tag))
if len(self.data) < 256:
o.write(' Data: {} ({} bytes)\n'.format(
repr(str(self.data)), len(self.data)))
else:
o.write(' Data: {} bytes\n'.format(len(self.data)))
def encode(self):
"""Serializes the descriptor.
Returns:
A bytearray() with the descriptor data.
"""
num_bytes_following = len(self.data)
nbf_with_padding = round_to_multiple(num_bytes_following, 8)
padding_size = nbf_with_padding - num_bytes_following
desc = struct.pack(self.FORMAT_STRING, self.tag, nbf_with_padding)
padding = struct.pack(str(padding_size) + 'x')
ret = desc + self.data + padding
return bytearray(ret)
def verify(self, image_dir, image_ext, expected_chain_partitions_map,
image_containing_descriptor, accept_zeroed_hashtree):
"""Verifies contents of the descriptor - used in verify_image sub-command.
Arguments:
image_dir: The directory of the file being verified.
image_ext: The extension of the file being verified (e.g. '.img').
expected_chain_partitions_map: A map from partition name to the
tuple (rollback_index_location, key_blob).
image_containing_descriptor: The image the descriptor is in.
accept_zeroed_hashtree: If True, don't fail if hashtree or FEC data is
zeroed out.
Returns:
True if the descriptor verifies, False otherwise.
"""
# Deletes unused parameters to prevent pylint warning unused-argument.
del image_dir, image_ext, expected_chain_partitions_map
del image_containing_descriptor, accept_zeroed_hashtree
# Nothing to do.
return True
class AvbPropertyDescriptor(AvbDescriptor):
"""A class for property descriptors.
See the |AvbPropertyDescriptor| C struct for more information.
Attributes:
key: The key.
value: The key.
"""
TAG = 0
SIZE = 32
FORMAT_STRING = ('!QQ' # tag, num_bytes_following (descriptor header)
'Q' # key size (bytes)
'Q') # value size (bytes)
def __init__(self, data=None):
"""Initializes a new property descriptor.
Arguments:
data: If not None, must be a bytearray of size |SIZE|.
Raises:
LookupError: If the given descriptor is malformed.
"""
AvbDescriptor.__init__(self, None)
assert struct.calcsize(self.FORMAT_STRING) == self.SIZE
if data:
(tag, num_bytes_following, key_size,
value_size) = struct.unpack(self.FORMAT_STRING, data[0:self.SIZE])
expected_size = round_to_multiple(
self.SIZE - 16 + key_size + 1 + value_size + 1, 8)
if tag != self.TAG or num_bytes_following != expected_size:
raise LookupError('Given data does not look like a property '
'descriptor.')
self.key = data[self.SIZE:(self.SIZE + key_size)]
self.value = data[(self.SIZE + key_size + 1):(self.SIZE + key_size + 1 +
value_size)]
else:
self.key = ''
self.value = ''
def print_desc(self, o):
"""Print the descriptor.
Arguments:
o: The object to write the output to.
"""
if len(self.value) < 256:
o.write(' Prop: {} -> {}\n'.format(self.key, repr(str(self.value))))
else:
o.write(' Prop: {} -> ({} bytes)\n'.format(self.key, len(self.value)))
def encode(self):
"""Serializes the descriptor.
Returns:
A bytearray() with the descriptor data.
"""
num_bytes_following = self.SIZE + len(self.key) + len(self.value) + 2 - 16
nbf_with_padding = round_to_multiple(num_bytes_following, 8)
padding_size = nbf_with_padding - num_bytes_following
desc = struct.pack(self.FORMAT_STRING, self.TAG, nbf_with_padding,
len(self.key), len(self.value))
padding = struct.pack(str(padding_size) + 'x')
ret = desc + self.key + '\0' + self.value + '\0' + padding
return bytearray(ret)
def verify(self, image_dir, image_ext, expected_chain_partitions_map,
image_containing_descriptor, accept_zeroed_hashtree):
"""Verifies contents of the descriptor - used in verify_image sub-command.
Arguments:
image_dir: The directory of the file being verified.
image_ext: The extension of the file being verified (e.g. '.img').
expected_chain_partitions_map: A map from partition name to the
tuple (rollback_index_location, key_blob).
image_containing_descriptor: The image the descriptor is in.
accept_zeroed_hashtree: If True, don't fail if hashtree or FEC data is
zeroed out.
Returns:
True if the descriptor verifies, False otherwise.
"""
# Nothing to do.
return True
class AvbHashtreeDescriptor(AvbDescriptor):
"""A class for hashtree descriptors.
See the |AvbHashtreeDescriptor| C struct for more information.
Attributes:
dm_verity_version: dm-verity version used.
image_size: Size of the image, after rounding up to |block_size|.
tree_offset: Offset of the hash tree in the file.
tree_size: Size of the tree.
data_block_size: Data block size
hash_block_size: Hash block size
fec_num_roots: Number of roots used for FEC (0 if FEC is not used).
fec_offset: Offset of FEC data (0 if FEC is not used).
fec_size: Size of FEC data (0 if FEC is not used).
hash_algorithm: Hash algorithm used.
partition_name: Partition name.
salt: Salt used.
root_digest: Root digest.
flags: Descriptor flags (see avb_hashtree_descriptor.h).
"""
TAG = 1
RESERVED = 60
SIZE = 120 + RESERVED
FORMAT_STRING = ('!QQ' # tag, num_bytes_following (descriptor header)
'L' # dm-verity version used
'Q' # image size (bytes)
'Q' # tree offset (bytes)
'Q' # tree size (bytes)
'L' # data block size (bytes)
'L' # hash block size (bytes)
'L' # FEC number of roots
'Q' # FEC offset (bytes)
'Q' # FEC size (bytes)
'32s' # hash algorithm used
'L' # partition name (bytes)
'L' # salt length (bytes)
'L' # root digest length (bytes)
'L' + # flags
str(RESERVED) + 's') # reserved
def __init__(self, data=None):
"""Initializes a new hashtree descriptor.
Arguments:
data: If not None, must be a bytearray of size |SIZE|.
Raises:
LookupError: If the given descriptor is malformed.
"""
AvbDescriptor.__init__(self, None)
assert struct.calcsize(self.FORMAT_STRING) == self.SIZE
if data:
(tag, num_bytes_following, self.dm_verity_version, self.image_size,
self.tree_offset, self.tree_size, self.data_block_size,
self.hash_block_size, self.fec_num_roots, self.fec_offset, self.fec_size,
self.hash_algorithm, partition_name_len, salt_len,
root_digest_len, self.flags, _) = struct.unpack(self.FORMAT_STRING,
data[0:self.SIZE])
expected_size = round_to_multiple(
self.SIZE - 16 + partition_name_len + salt_len + root_digest_len, 8)
if tag != self.TAG or num_bytes_following != expected_size:
raise LookupError('Given data does not look like a hashtree '
'descriptor.')
# Nuke NUL-bytes at the end.
self.hash_algorithm = self.hash_algorithm.split('\0', 1)[0]
o = 0
self.partition_name = str(data[(self.SIZE + o):(self.SIZE + o +
partition_name_len)])
# Validate UTF-8 - decode() raises UnicodeDecodeError if not valid UTF-8.
self.partition_name.decode('utf-8')
o += partition_name_len
self.salt = data[(self.SIZE + o):(self.SIZE + o + salt_len)]
o += salt_len
self.root_digest = data[(self.SIZE + o):(self.SIZE + o + root_digest_len)]
if root_digest_len != len(hashlib.new(name=self.hash_algorithm).digest()):
if root_digest_len != 0:
raise LookupError('root_digest_len doesn\'t match hash algorithm')
else:
self.dm_verity_version = 0
self.image_size = 0
self.tree_offset = 0
self.tree_size = 0
self.data_block_size = 0
self.hash_block_size = 0
self.fec_num_roots = 0
self.fec_offset = 0
self.fec_size = 0
self.hash_algorithm = ''
self.partition_name = ''
self.salt = bytearray()
self.root_digest = bytearray()
self.flags = 0
def print_desc(self, o):
"""Print the descriptor.
Arguments:
o: The object to write the output to.
"""
o.write(' Hashtree descriptor:\n')
o.write(' Version of dm-verity: {}\n'.format(self.dm_verity_version))
o.write(' Image Size: {} bytes\n'.format(self.image_size))
o.write(' Tree Offset: {}\n'.format(self.tree_offset))
o.write(' Tree Size: {} bytes\n'.format(self.tree_size))
o.write(' Data Block Size: {} bytes\n'.format(
self.data_block_size))
o.write(' Hash Block Size: {} bytes\n'.format(
self.hash_block_size))
o.write(' FEC num roots: {}\n'.format(self.fec_num_roots))
o.write(' FEC offset: {}\n'.format(self.fec_offset))
o.write(' FEC size: {} bytes\n'.format(self.fec_size))
o.write(' Hash Algorithm: {}\n'.format(self.hash_algorithm))
o.write(' Partition Name: {}\n'.format(self.partition_name))
o.write(' Salt: {}\n'.format(str(self.salt).encode(
'hex')))
o.write(' Root Digest: {}\n'.format(str(
self.root_digest).encode('hex')))
o.write(' Flags: {}\n'.format(self.flags))
def encode(self):
"""Serializes the descriptor.
Returns:
A bytearray() with the descriptor data.
"""
encoded_name = self.partition_name.encode('utf-8')
num_bytes_following = (self.SIZE + len(encoded_name) + len(self.salt) +
len(self.root_digest) - 16)
nbf_with_padding = round_to_multiple(num_bytes_following, 8)
padding_size = nbf_with_padding - num_bytes_following
desc = struct.pack(self.FORMAT_STRING, self.TAG, nbf_with_padding,
self.dm_verity_version, self.image_size,
self.tree_offset, self.tree_size, self.data_block_size,
self.hash_block_size, self.fec_num_roots,
self.fec_offset, self.fec_size, self.hash_algorithm,
len(encoded_name), len(self.salt), len(self.root_digest),
self.flags, self.RESERVED*'\0')
padding = struct.pack(str(padding_size) + 'x')
ret = desc + encoded_name + self.salt + self.root_digest + padding
return bytearray(ret)
def verify(self, image_dir, image_ext, expected_chain_partitions_map,
image_containing_descriptor, accept_zeroed_hashtree):
"""Verifies contents of the descriptor - used in verify_image sub-command.
Arguments:
image_dir: The directory of the file being verified.
image_ext: The extension of the file being verified (e.g. '.img').
expected_chain_partitions_map: A map from partition name to the
tuple (rollback_index_location, key_blob).
image_containing_descriptor: The image the descriptor is in.
accept_zeroed_hashtree: If True, don't fail if hashtree or FEC data is
zeroed out.
Returns:
True if the descriptor verifies, False otherwise.
"""
if not self.partition_name:
image_filename = image_containing_descriptor.filename
image = image_containing_descriptor
else:
image_filename = os.path.join(image_dir, self.partition_name + image_ext)
image = ImageHandler(image_filename)
# Generate the hashtree and checks that it matches what's in the file.
digest_size = len(hashlib.new(name=self.hash_algorithm).digest())
digest_padding = round_to_pow2(digest_size) - digest_size
(hash_level_offsets, tree_size) = calc_hash_level_offsets(
self.image_size, self.data_block_size, digest_size + digest_padding)
root_digest, hash_tree = generate_hash_tree(image, self.image_size,
self.data_block_size,
self.hash_algorithm, self.salt,
digest_padding,
hash_level_offsets,
tree_size)
# The root digest must match unless it is not embedded in the descriptor.
if self.root_digest and root_digest != self.root_digest:
sys.stderr.write('hashtree of {} does not match descriptor\n'.
format(image_filename))
return False
# ... also check that the on-disk hashtree matches
image.seek(self.tree_offset)
hash_tree_ondisk = image.read(self.tree_size)
is_zeroed = (self.tree_size == 0) or (hash_tree_ondisk[0:8] == 'ZeRoHaSH')
if is_zeroed and accept_zeroed_hashtree:
print('{}: skipping verification since hashtree is zeroed and '
'--accept_zeroed_hashtree was given'
.format(self.partition_name))
else:
if hash_tree != hash_tree_ondisk:
sys.stderr.write('hashtree of {} contains invalid data\n'.
format(image_filename))
return False
print('{}: Successfully verified {} hashtree of {} for image of {} bytes'
.format(self.partition_name, self.hash_algorithm, image.filename,
self.image_size))
# TODO(zeuthen): we could also verify that the FEC stored in the image is
# correct but this a) currently requires the 'fec' binary; and b) takes a
# long time; and c) is not strictly needed for verification purposes as
# we've already verified the root hash.
return True
class AvbHashDescriptor(AvbDescriptor):
"""A class for hash descriptors.
See the |AvbHashDescriptor| C struct for more information.
Attributes:
image_size: Image size, in bytes.
hash_algorithm: Hash algorithm used.
partition_name: Partition name.
salt: Salt used.
digest: The hash value of salt and data combined.
flags: The descriptor flags (see avb_hash_descriptor.h).
"""
TAG = 2
RESERVED = 60
SIZE = 72 + RESERVED
FORMAT_STRING = ('!QQ' # tag, num_bytes_following (descriptor header)
'Q' # image size (bytes)
'32s' # hash algorithm used
'L' # partition name (bytes)
'L' # salt length (bytes)
'L' # digest length (bytes)
'L' + # flags
str(RESERVED) + 's') # reserved
def __init__(self, data=None):
"""Initializes a new hash descriptor.
Arguments:
data: If not None, must be a bytearray of size |SIZE|.
Raises:
LookupError: If the given descriptor is malformed.
"""
AvbDescriptor.__init__(self, None)
assert struct.calcsize(self.FORMAT_STRING) == self.SIZE
if data:
(tag, num_bytes_following, self.image_size, self.hash_algorithm,
partition_name_len, salt_len,
digest_len, self.flags, _) = struct.unpack(self.FORMAT_STRING,
data[0:self.SIZE])
expected_size = round_to_multiple(
self.SIZE - 16 + partition_name_len + salt_len + digest_len, 8)
if tag != self.TAG or num_bytes_following != expected_size:
raise LookupError('Given data does not look like a hash ' 'descriptor.')
# Nuke NUL-bytes at the end.
self.hash_algorithm = self.hash_algorithm.split('\0', 1)[0]
o = 0
self.partition_name = str(data[(self.SIZE + o):(self.SIZE + o +
partition_name_len)])
# Validate UTF-8 - decode() raises UnicodeDecodeError if not valid UTF-8.
self.partition_name.decode('utf-8')
o += partition_name_len
self.salt = data[(self.SIZE + o):(self.SIZE + o + salt_len)]
o += salt_len
self.digest = data[(self.SIZE + o):(self.SIZE + o + digest_len)]
if digest_len != len(hashlib.new(name=self.hash_algorithm).digest()):
if digest_len != 0:
raise LookupError('digest_len doesn\'t match hash algorithm')
else:
self.image_size = 0
self.hash_algorithm = ''
self.partition_name = ''
self.salt = bytearray()
self.digest = bytearray()
self.flags = 0
def print_desc(self, o):
"""Print the descriptor.
Arguments:
o: The object to write the output to.
"""
o.write(' Hash descriptor:\n')
o.write(' Image Size: {} bytes\n'.format(self.image_size))
o.write(' Hash Algorithm: {}\n'.format(self.hash_algorithm))
o.write(' Partition Name: {}\n'.format(self.partition_name))
o.write(' Salt: {}\n'.format(str(self.salt).encode(
'hex')))
o.write(' Digest: {}\n'.format(str(self.digest).encode(
'hex')))
o.write(' Flags: {}\n'.format(self.flags))
def encode(self):
"""Serializes the descriptor.
Returns:
A bytearray() with the descriptor data.
"""
encoded_name = self.partition_name.encode('utf-8')
num_bytes_following = (
self.SIZE + len(encoded_name) + len(self.salt) + len(self.digest) - 16)
nbf_with_padding = round_to_multiple(num_bytes_following, 8)
padding_size = nbf_with_padding - num_bytes_following
desc = struct.pack(self.FORMAT_STRING, self.TAG, nbf_with_padding,
self.image_size, self.hash_algorithm, len(encoded_name),
len(self.salt), len(self.digest), self.flags,
self.RESERVED*'\0')
padding = struct.pack(str(padding_size) + 'x')
ret = desc + encoded_name + self.salt + self.digest + padding
return bytearray(ret)
def verify(self, image_dir, image_ext, expected_chain_partitions_map,
image_containing_descriptor, accept_zeroed_hashtree):
"""Verifies contents of the descriptor - used in verify_image sub-command.
Arguments:
image_dir: The directory of the file being verified.
image_ext: The extension of the file being verified (e.g. '.img').
expected_chain_partitions_map: A map from partition name to the
tuple (rollback_index_location, key_blob).
image_containing_descriptor: The image the descriptor is in.
accept_zeroed_hashtree: If True, don't fail if hashtree or FEC data is
zeroed out.
Returns:
True if the descriptor verifies, False otherwise.
"""
if not self.partition_name:
image_filename = image_containing_descriptor.filename
image = image_containing_descriptor
else:
image_filename = os.path.join(image_dir, self.partition_name + image_ext)
image = ImageHandler(image_filename)
data = image.read(self.image_size)
ha = hashlib.new(self.hash_algorithm)
ha.update(self.salt)
ha.update(data)
digest = ha.digest()
# The digest must match unless there is no digest in the descriptor.
if self.digest and digest != self.digest:
sys.stderr.write('{} digest of {} does not match digest in descriptor\n'.
format(self.hash_algorithm, image_filename))
return False
print('{}: Successfully verified {} hash of {} for image of {} bytes'
.format(self.partition_name, self.hash_algorithm, image.filename,
self.image_size))
return True
class AvbKernelCmdlineDescriptor(AvbDescriptor):
"""A class for kernel command-line descriptors.
See the |AvbKernelCmdlineDescriptor| C struct for more information.
Attributes:
flags: Flags.
kernel_cmdline: The kernel command-line.
"""
TAG = 3
SIZE = 24
FORMAT_STRING = ('!QQ' # tag, num_bytes_following (descriptor header)
'L' # flags
'L') # cmdline length (bytes)
FLAGS_USE_ONLY_IF_HASHTREE_NOT_DISABLED = (1 << 0)
FLAGS_USE_ONLY_IF_HASHTREE_DISABLED = (1 << 1)
def __init__(self, data=None):
"""Initializes a new kernel cmdline descriptor.
Arguments:
data: If not None, must be a bytearray of size |SIZE|.
Raises:
LookupError: If the given descriptor is malformed.
"""
AvbDescriptor.__init__(self, None)
assert struct.calcsize(self.FORMAT_STRING) == self.SIZE
if data:
(tag, num_bytes_following, self.flags, kernel_cmdline_length) = (
struct.unpack(self.FORMAT_STRING, data[0:self.SIZE]))
expected_size = round_to_multiple(self.SIZE - 16 + kernel_cmdline_length,
8)
if tag != self.TAG or num_bytes_following != expected_size:
raise LookupError('Given data does not look like a kernel cmdline '
'descriptor.')
# Nuke NUL-bytes at the end.
self.kernel_cmdline = str(data[self.SIZE:(self.SIZE +
kernel_cmdline_length)])
# Validate UTF-8 - decode() raises UnicodeDecodeError if not valid UTF-8.
self.kernel_cmdline.decode('utf-8')
else:
self.flags = 0
self.kernel_cmdline = ''
def print_desc(self, o):
"""Print the descriptor.
Arguments:
o: The object to write the output to.
"""
o.write(' Kernel Cmdline descriptor:\n')
o.write(' Flags: {}\n'.format(self.flags))
o.write(' Kernel Cmdline: {}\n'.format(repr(
self.kernel_cmdline)))
def encode(self):
"""Serializes the descriptor.
Returns:
A bytearray() with the descriptor data.
"""
encoded_str = self.kernel_cmdline.encode('utf-8')
num_bytes_following = (self.SIZE + len(encoded_str) - 16)
nbf_with_padding = round_to_multiple(num_bytes_following, 8)
padding_size = nbf_with_padding - num_bytes_following
desc = struct.pack(self.FORMAT_STRING, self.TAG, nbf_with_padding,
self.flags, len(encoded_str))
padding = struct.pack(str(padding_size) + 'x')
ret = desc + encoded_str + padding
return bytearray(ret)
def verify(self, image_dir, image_ext, expected_chain_partitions_map,
image_containing_descriptor, accept_zeroed_hashtree):
"""Verifies contents of the descriptor - used in verify_image sub-command.
Arguments:
image_dir: The directory of the file being verified.
image_ext: The extension of the file being verified (e.g. '.img').
expected_chain_partitions_map: A map from partition name to the
tuple (rollback_index_location, key_blob).
image_containing_descriptor: The image the descriptor is in.
accept_zeroed_hashtree: If True, don't fail if hashtree or FEC data is
zeroed out.
Returns:
True if the descriptor verifies, False otherwise.
"""
# Nothing to verify.
return True
class AvbChainPartitionDescriptor(AvbDescriptor):
"""A class for chained partition descriptors.
See the |AvbChainPartitionDescriptor| C struct for more information.
Attributes:
rollback_index_location: The rollback index location to use.
partition_name: Partition name.
public_key: Bytes for the public key.
"""
TAG = 4
RESERVED = 64
SIZE = 28 + RESERVED
FORMAT_STRING = ('!QQ' # tag, num_bytes_following (descriptor header)
'L' # rollback_index_location
'L' # partition_name_size (bytes)
'L' + # public_key_size (bytes)
str(RESERVED) + 's') # reserved
def __init__(self, data=None):
"""Initializes a new chain partition descriptor.
Arguments:
data: If not None, must be a bytearray of size |SIZE|.
Raises:
LookupError: If the given descriptor is malformed.
"""
AvbDescriptor.__init__(self, None)
assert struct.calcsize(self.FORMAT_STRING) == self.SIZE
if data:
(tag, num_bytes_following, self.rollback_index_location,
partition_name_len,
public_key_len, _) = struct.unpack(self.FORMAT_STRING, data[0:self.SIZE])
expected_size = round_to_multiple(
self.SIZE - 16 + partition_name_len + public_key_len, 8)
if tag != self.TAG or num_bytes_following != expected_size:
raise LookupError('Given data does not look like a chain partition '
'descriptor.')
o = 0
self.partition_name = str(data[(self.SIZE + o):(self.SIZE + o +
partition_name_len)])
# Validate UTF-8 - decode() raises UnicodeDecodeError if not valid UTF-8.
self.partition_name.decode('utf-8')
o += partition_name_len
self.public_key = data[(self.SIZE + o):(self.SIZE + o + public_key_len)]
else:
self.rollback_index_location = 0
self.partition_name = ''
self.public_key = bytearray()
def print_desc(self, o):
"""Print the descriptor.
Arguments:
o: The object to write the output to.
"""
o.write(' Chain Partition descriptor:\n')
o.write(' Partition Name: {}\n'.format(self.partition_name))
o.write(' Rollback Index Location: {}\n'.format(
self.rollback_index_location))
# Just show the SHA1 of the key, for size reasons.
hexdig = hashlib.sha1(self.public_key).hexdigest()
o.write(' Public key (sha1): {}\n'.format(hexdig))
def encode(self):
"""Serializes the descriptor.
Returns:
A bytearray() with the descriptor data.
"""
encoded_name = self.partition_name.encode('utf-8')
num_bytes_following = (
self.SIZE + len(encoded_name) + len(self.public_key) - 16)
nbf_with_padding = round_to_multiple(num_bytes_following, 8)
padding_size = nbf_with_padding - num_bytes_following
desc = struct.pack(self.FORMAT_STRING, self.TAG, nbf_with_padding,
self.rollback_index_location, len(encoded_name),
len(self.public_key), self.RESERVED*'\0')
padding = struct.pack(str(padding_size) + 'x')
ret = desc + encoded_name + self.public_key + padding
return bytearray(ret)
def verify(self, image_dir, image_ext, expected_chain_partitions_map,
image_containing_descriptor, accept_zeroed_hashtree):
"""Verifies contents of the descriptor - used in verify_image sub-command.
Arguments:
image_dir: The directory of the file being verified.
image_ext: The extension of the file being verified (e.g. '.img').
expected_chain_partitions_map: A map from partition name to the
tuple (rollback_index_location, key_blob).
image_containing_descriptor: The image the descriptor is in.
accept_zeroed_hashtree: If True, don't fail if hashtree or FEC data is
zeroed out.
Returns:
True if the descriptor verifies, False otherwise.
"""
value = expected_chain_partitions_map.get(self.partition_name)
if not value:
sys.stderr.write('No expected chain partition for partition {}. Use '
'--expected_chain_partition to specify expected '
'contents or --follow_chain_partitions.\n'.
format(self.partition_name))
return False
rollback_index_location, pk_blob = value
if self.rollback_index_location != rollback_index_location:
sys.stderr.write('Expected rollback_index_location {} does not '
'match {} in descriptor for partition {}\n'.
format(rollback_index_location,
self.rollback_index_location,
self.partition_name))
return False
if self.public_key != pk_blob:
sys.stderr.write('Expected public key blob does not match public '
'key blob in descriptor for partition {}\n'.
format(self.partition_name))
return False
print('{}: Successfully verified chain partition descriptor matches '
'expected data'.format(self.partition_name))
return True
DESCRIPTOR_CLASSES = [
AvbPropertyDescriptor, AvbHashtreeDescriptor, AvbHashDescriptor,
AvbKernelCmdlineDescriptor, AvbChainPartitionDescriptor
]
def parse_descriptors(data):
"""Parses a blob of data into descriptors.
Arguments:
data: A bytearray() with encoded descriptors.
Returns:
A list of instances of objects derived from AvbDescriptor. For
unknown descriptors, the class AvbDescriptor is used.
"""
o = 0
ret = []
while o < len(data):
tag, nb_following = struct.unpack('!2Q', data[o:o + 16])
if tag < len(DESCRIPTOR_CLASSES):
c = DESCRIPTOR_CLASSES[tag]
else:
c = AvbDescriptor
ret.append(c(bytearray(data[o:o + 16 + nb_following])))
o += 16 + nb_following
return ret
class AvbFooter(object):
"""A class for parsing and writing footers.
Footers are stored at the end of partitions and point to where the
AvbVBMeta blob is located. They also contain the original size of
the image before AVB information was added.
Attributes:
magic: Magic for identifying the footer, see |MAGIC|.
version_major: The major version of avbtool that wrote the footer.
version_minor: The minor version of avbtool that wrote the footer.
original_image_size: Original image size.
vbmeta_offset: Offset of where the AvbVBMeta blob is stored.
vbmeta_size: Size of the AvbVBMeta blob.
"""
MAGIC = 'AVBf'
SIZE = 64
RESERVED = 28
FOOTER_VERSION_MAJOR = AVB_FOOTER_VERSION_MAJOR
FOOTER_VERSION_MINOR = AVB_FOOTER_VERSION_MINOR
FORMAT_STRING = ('!4s2L' # magic, 2 x version.
'Q' # Original image size.
'Q' # Offset of VBMeta blob.
'Q' + # Size of VBMeta blob.
str(RESERVED) + 'x') # padding for reserved bytes
def __init__(self, data=None):
"""Initializes a new footer object.
Arguments:
data: If not None, must be a bytearray of size 4096.
Raises:
LookupError: If the given footer is malformed.
struct.error: If the given data has no footer.
"""
assert struct.calcsize(self.FORMAT_STRING) == self.SIZE
if data:
(self.magic, self.version_major, self.version_minor,
self.original_image_size, self.vbmeta_offset,
self.vbmeta_size) = struct.unpack(self.FORMAT_STRING, data)
if self.magic != self.MAGIC:
raise LookupError('Given data does not look like a AVB footer.')
else:
self.magic = self.MAGIC
self.version_major = self.FOOTER_VERSION_MAJOR
self.version_minor = self.FOOTER_VERSION_MINOR
self.original_image_size = 0
self.vbmeta_offset = 0
self.vbmeta_size = 0
def encode(self):
"""Gets a string representing the binary encoding of the footer.
Returns:
A bytearray() with a binary representation of the footer.
"""
return struct.pack(self.FORMAT_STRING, self.magic, self.version_major,
self.version_minor, self.original_image_size,
self.vbmeta_offset, self.vbmeta_size)
# Android Firmware Transparency Log Data Structures
class AvbIcpHeader(object):
"""A class for the transparency log inclusion proof header.
Attributes:
magic: Magic for identifying the ICP header.
required_icp_version_major: The major version of AVB that wrote the entry.
required_icp_version_minor: The minor version of AVB that wrote the entry.
algorithm: Hash algorithm used. ID is defined in ALGORITHMS.
icp_count: Number of inclusion proofs represented in this structure.
"""
SIZE = 18 # The size of the structure, in bytes
MAGIC = 'AFTL'
FORMAT_STRING = ('!4s2L' # magic, major & minor version
'L' # algorithm type for transparency log
'H') # number of inclusion proof entries
def __init__(self, data=None):
"""Initializes a new transparency header object.
Arguments:
data: If not None, must be a bytearray of size == 18.
Raises:
AvbError: If invalid structure for AvbIcpHeader.
"""
assert struct.calcsize(self.FORMAT_STRING) == self.SIZE
if data:
(self.magic, self.required_icp_version_major,
self.required_icp_version_minor, self.algorithm,
self.icp_count) = struct.unpack(self.FORMAT_STRING, data)
else:
self.magic = self.MAGIC
self.required_icp_version_major = AVB_VERSION_MAJOR
self.required_icp_version_minor = AVB_VERSION_MINOR
self.algorithm = 0
self.icp_count = 0
if not self.is_valid():
raise AvbError('Invalid structure for AvbIcpHeader')
def save(self, output):
"""Serializes the transparency header (18) to disk.
Arguments:
output: The object to write the header to.
Raises:
AvbError if invalid structure for AvbIcpHeader.
"""
output.write(self.encode())
def encode(self):
"""Serializes the header (18) to a bytearray().
Returns:
A bytearray() with the encoded header.
Raises:
AvbError: If invalid structure for AvbIcpHeader.
"""
if not self.is_valid():
raise AvbError('Invalid structure for AvbIcpHeader')
return struct.pack(self.FORMAT_STRING, self.magic,
self.required_icp_version_major,
self.required_icp_version_minor,
self.algorithm, self.icp_count)
def is_valid(self):
"""Ensures that values in an AvbIcpHeader structure are sane.
Returns:
True if the values in the AvbIcpHeader are sane, False otherwise.
"""
if self.magic != AvbIcpHeader.MAGIC:
sys.stderr.write(
'ICP Header: magic value mismatch: {}\n'.format(self.magic))
return False
if self.required_icp_version_major > AVB_VERSION_MAJOR:
sys.stderr.write('ICP header: major version mismatch: {}\n'.format(
self.required_icp_version_major))
return False
if self.required_icp_version_minor > AVB_VERSION_MINOR:
sys.stderr.write('ICP header: minor version mismatch: {}\n'.format(
self.required_icp_version_minor))
return False
if self.algorithm < 0 or self.algorithm >= len(ALGORITHMS):
sys.stderr.write(
'ICP header: algorithm identifier out of range: {}\n'.format(
self.algorithm))
return False
if self.icp_count < 0:
sys.stderr.write(
'ICP header: ICP entry count out of range: {}\n'.format(
self.icp_count))
return False
return True
def print_desc(self, o):
"""Print the descriptor.
Arguments:
o: The object to write the output to.
"""
o.write(' Major version: {}\n'.format(
self.required_icp_version_major))
o.write(' Minor version: {}\n'.format(
self.required_icp_version_minor))
o.write(' Algorithm: {}\n'.format(
lookup_algorithm_by_type(self.algorithm)[0]))
o.write(' ICP entries count: {}\n'.format(
self.icp_count))
def check_signature(log_root, log_root_sig,
transparency_log_pub_key):
"""Validates the signature provided by the transparency log.
Arguments:
log_root: The transparency log_root data structure.
log_root_sig: The signature of the transparency log_root data structure.
transparency_log_pub_key: The trusted public key of the transparency log.
Returns:
True if the signature check passes, otherwise False.
"""
logsig_tmp = tempfile.NamedTemporaryFile()
logsig_tmp.write(log_root_sig)
logsig_tmp.flush()
logroot_tmp = tempfile.NamedTemporaryFile()
logroot_tmp.write(log_root)
logroot_tmp.flush()
p = subprocess.Popen(['openssl', 'dgst', '-sha256', '-verify',
transparency_log_pub_key,
'-signature', logsig_tmp.name, logroot_tmp.name],
stdin=subprocess.PIPE,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE)
(_, openssl_err) = p.communicate()
retcode = p.wait()
if not retcode:
return True
sys.stderr.write('openssl status {}'.format(openssl_err))
return False
class AvbIcpSignedRootBlob(object):
"""A class for the components required to validate the incusion proof.
This class contains the signed tree root components required to verify
an inclusion proof given a list of hashes.
Attributes:
leaf_hash: The hash of the leaf corresponding with this log entry.
tree_size: The size of the Merkle tree.
log_root: The transparency log_root data structure.
root_hash: The calculated root hash of the Merkle tree.
log_root_sig: The signed root hash. Used to verify the ICP.
"""
# TODO(danielaustin): Match hash and signature size to algorithm value.
SIZE = 645
FORMAT_STRING = ('!32s' # The leaf hash corresponding to this vbmeta.
'Q' # The Merkle tree size
'61s' # The log_root structure that is signed
'32s' # The Merkle tree root hash.
'512s') # The log_root signed with the transparency log key.
def __init__(self, data=None):
"""Initializes a new signed_root_blob structure.
Arguments:
data: If not None, must be a bytearray of size |SIZE|.
Raises:
AvbError: If data does not represent a well-formed AvbIcpSignedRootBlob.
"""
assert struct.calcsize(self.FORMAT_STRING) == self.SIZE
if data:
(self.leaf_hash, self.tree_size, self.log_root,
self.root_hash, self.log_root_sig) = struct.unpack(
self.FORMAT_STRING, data)
else:
self.leaf_hash = bytearray()
self.tree_size = 0
self.log_root = bytearray()
self.root_hash = bytearray()
self.log_root_sig = ''
if not self.is_valid():
raise AvbError('Invalid structure for AvbIcpSignedBlob')
def translate_afi_response(self, afi_response):
"""Translates an AddFirmwareImageResponse message to AvbIcpSignedRootBlob.
Arguments:
afi_response: An AddFirmwareImageResponse proto message.
Raises:
AvbError: If unsupported hash size is detected.
"""
# Do the hash calculation
self.leaf_hash = rfc6962_hash_leaf(afi_response.vbmeta_leaf)
self.log_root = afi_response.vbmeta_proof.sth.log_root
self.log_root_sig = str(afi_response.vbmeta_proof.sth.log_root_signature)
# Partial format string to extract the tree_size and root_hash from
# the log_root. THis structure is defined:
# https://github.com/google/trillian/blob/master/trillian.proto#L255
# TODO(danielaustin): Make this into a class.
partial_log_format_string = ('!H' # Version
'Q' # tree_size
'B' # hash_size, verify this is 32 for now
'32s') # The root_hash
(log_root_version, self.tree_size, root_hash_size,
self.root_hash) = struct.unpack(partial_log_format_string,
self.log_root[0:43])
if log_root_version != 1:
raise AvbError('Unsupported log root version: {}'.format(
log_root_version))
if len(self.root_hash) != root_hash_size:
raise AvbError('Unsupported hash size.')
def encode(self):
"""Serializes the AvbSignedRootBlob structure (584) to a bytearray.
Returns:
A bytearray with the AvbSignedRootBlob.
Raises:
AvbError: If data does not represent a well-formed AvbIcpSignedRootBlob.
"""
if not self.is_valid():
raise AvbError('Invalid structure for AvbIcpSignedRootBlob')
return struct.pack(self.FORMAT_STRING,
str(self.leaf_hash),
self.tree_size,
str(self.log_root),
str(self.root_hash),
str(self.log_root_sig))
def is_valid(self):
"""Ensures that values in the AvbIcpSignedRootBlob are sane.
Returns:
True if the values in the AvbIcpSignedRootBlob are sane, False otherwise.
"""
# TODO(danielaustin): match these up with algorithm instead of defaults.
# All structures being of size 0 is valid
if (not self.leaf_hash and self.tree_size == 0 and
not self.root_hash and not self.log_root_sig):
return True
if len(self.leaf_hash) != 32:
sys.stderr.write('AvbIcpSignedRootBlob: Bad leaf_hash size {}'.format(
len(self.leaf_hash)))
return False
if self.tree_size < 0:
sys.stderr.write('AvbIcpSignedRootBlob: Bad tree_size value {}'.format(
self.tree_size))
return False
if len(self.root_hash) != 32:
sys.stderr.write('AvbIcpSignedRootBlob: Bad root_hash size {}'.format(
len(self.root_hash)))
return False
if len(self.log_root_sig) != 512:
sys.stderr.write('AvbIcpSignedRootBlob: Bad log_root_sig size {}'.format(
len(self.log_root_sig)))
return False
return True
def print_desc(self, o):
"""Print the descriptor.
Arguments:
o: The object to write the output to.
"""
o.write(' Leaf hash: {}\n'.format(
binascii.hexlify(self.leaf_hash)))
o.write(' Tree size: {}\n'.format(
self.tree_size))
o.write(' Log root: {}\n'.format(
binascii.hexlify(self.log_root)))
o.write(' Root hash: {}\n'.format(
binascii.hexlify(self.root_hash)))
class AvbIcpEntry(object):
"""A class for the transparency log inclusion proof entries.
The data that represents each of the components of the ICP entry are stored
immediately following the ICP entry header. The format is log_url,
SignedLogRoot, and inclusion proof hashes.
Attributes:
log_url_size: Length of the string representing the transparency log URL.
leaf_index: Leaf index in the transparency log representing this entry.
signed_root_blob_size: Size of the SignedLogRoot for the transparency log;
treat as an opaque blob for now.
proof_hash_count: Number of hashes comprising the inclusion proof.
proof_size: The total size of the inclusion proof, in bytes.
next_entry: 1 if there is a next entry, 0 otherwise.
log_url: The URL for the transparency log that generated this inclusion
proof.
signed_root_blob: The data comprising the signed tree head structure.
proofs: The hashes comprising the inclusion proof.
"""
SIZE = 22 # The size of the structure, in bytes
FORMAT_STRING = ('!L' # transparency log server url size
'Q' # leaf index
'L' # signed tree root blob size
'B' # number of hashes in the inclusion proof
'L' # size of the inclusion proof in bytes
'B') # next entry marker
# These are used to capture the log_url, signed_root_blob,
# and the proofs elements for the encode & save function.
def __init__(self, data=None):
"""Initializes a new ICP entry object.
Arguments:
data: If not None, must be a bytearray of size >= 22.
Raises:
AvbError: If data does not represent a well-formed AvbIcpEntry.
"""
# Assert the header structure is of a sane size.
assert struct.calcsize(self.FORMAT_STRING) == self.SIZE
if data:
# Deserialize the header from the data blob.
(self.log_url_size, self.leaf_index, self.signed_root_blob_size,
self.proof_hash_count, self.proof_size, self.next_entry) = struct.unpack(
self.FORMAT_STRING, data[0:self.SIZE])
if len(data) >= self.SIZE:
# There's more data. Ensure the data entry size is valid.
if len(data) != self.get_expected_size():
if self.next_entry == 0:
raise AvbError('ICP entry size is not valid {}/{}.'
.format(len(data), self.get_expected_size()))
# Deserialize ICP entry components from the data blob.
expected_format_string = '{}s{}s{}s'.format(
self.log_url_size,
AvbIcpSignedRootBlob.SIZE,
self.proof_size)
(self.log_url, signed_root_blob_bytes, proof_bytes) = struct.unpack(
expected_format_string, data[self.SIZE:self.get_expected_size()])
self.signed_root_blob = AvbIcpSignedRootBlob(signed_root_blob_bytes)
self.proofs = []
if self.proof_hash_count > 0:
proof_idx = 0
hash_size = self.proof_size // self.proof_hash_count
for _ in range(self.proof_hash_count):
proof = proof_bytes[proof_idx:(proof_idx+hash_size)]
self.proofs.append(proof)
proof_idx += hash_size
else:
self.log_url_size = 0
self.leaf_index = 0
self.signed_root_blob_size = 0
self.proof_hash_count = 0
self.proof_size = 0
self.next_entry = 0
self.log_url = ''
self.signed_root_blob = AvbIcpSignedRootBlob()
self.proofs = []
if not self.is_valid():
raise AvbError('Invalid structure for AvbIcpEntry')
def set_log_url(self, log_url):
"""Sets the log_url and log_url_size elements in the AvbIcpEntry.
Arguments:
log_url: The string representing the transparency log URL.
"""
self.log_url = log_url
self.log_url_size = len(log_url)
def set_signed_root_blob(self, signed_root_blob):
"""Sets signed_root_blob and signed_root_blob_size.
Arguments:
signed_root_blob: An AvbIcpSignedRootBlob containing the SignedLogRoot
for the transparency log.
"""
self.signed_root_blob = signed_root_blob
self.signed_root_blob_size = signed_root_blob.SIZE
def set_proofs(self, proofs):
"""Sets the proof_hash_count, proofs, and proof_size.
Arguments:
proofs: A bytearray of concatenated hashes comprising the inclusion proof.
"""
self.proof_hash_count = 0
self.proofs = proofs
proof_size = 0
for proof in proofs:
proof_size += len(proof)
self.proof_hash_count += 1
self.proof_size = proof_size
def verify_icp(self, transparency_log_pub_key):
"""Verifies the contained inclusion proof given the public log key.
Arguments:
transparency_log_pub_key: The trusted public key for the log.
Returns:
True if the calculated signature matches AvbIcpEntry's. False otherwise.
"""
calc_root = root_from_icp(self.leaf_index, self.signed_root_blob.tree_size,
self.proofs, self.signed_root_blob.leaf_hash)
if (calc_root == self.signed_root_blob.root_hash) and check_signature(
self.signed_root_blob.log_root, self.signed_root_blob.log_root_sig,
transparency_log_pub_key):
return True
return False
def save(self, output):
"""Serializes the transparency header (22) and data to disk.
Arguments:
output: The object to write the header to.
Raises:
AvbError: If invalid entry structure.
"""
output.write(self.encode())
def encode(self):
"""Serializes the header (22) and data to a bytearray().
Returns:
A bytearray() with the encoded header.
Raises:
AvbError: If invalid entry structure.
"""
proof_bytes = bytearray()
if not self.is_valid():
raise AvbError('Invalid AvbIcpEntry structure')
expected_format_string = '{}{}s{}s{}s'.format(
self.FORMAT_STRING, self.log_url_size,
self.signed_root_blob.SIZE,
self.proof_size)
for proof in self.proofs:
proof_bytes.extend(proof)
return struct.pack(expected_format_string,
self.log_url_size, self.leaf_index,
self.signed_root_blob_size, self.proof_hash_count,
self.proof_size, self.next_entry, self.log_url,
self.signed_root_blob.encode(),
str(proof_bytes))
# TODO(danielaustin): Add unit test.
def translate_response(self, transparency_log, afi_response):
"""Takes an AddFirmwareInfoResponse object and translates to an AvbIcpEntry.
Arguments:
transparency_log: String representing the transparency log URL.
afi_response: The AddFirmwareResponse object to translate.
"""
self.set_log_url(transparency_log)
self.leaf_index = afi_response.vbmeta_proof.proof.leaf_index
self.signed_root_blob = AvbIcpSignedRootBlob()
self.signed_root_blob.translate_afi_response(afi_response)
self.signed_root_blob_size = self.signed_root_blob.SIZE
# Calculate the number of hashes.
proof_hashes = afi_response.vbmeta_proof.proof.hashes
self.set_proofs(proof_hashes)
def get_expected_size(self):
"""Gets the expected size of the full entry out of the header.
Returns:
The expected size of the AvbIcpEntry from the header.
"""
return (self.SIZE + self.log_url_size +
self.signed_root_blob_size + self.proof_size)
def is_valid(self):
"""Ensures that values in an AvbIcpEntry structure are sane.
Returns:
True if the values in the AvbIcpEntry are sane, False otherwise.
"""
if ((self.log_url and self.log_url_size != len(self.log_url))
or (not self.log_url and self.log_url_size != 0)):
sys.stderr.write('ICP entry: invalid URL size: {}\n'
.format(self.log_url_size))
return False
if self.leaf_index < 0:
sys.stderr.write('ICP entry: leaf index out of range: '
'{}\n'.format(self.leaf_index))
return False
if not self.signed_root_blob or not self.signed_root_blob.is_valid():
sys.stderr.write('ICP entry: invalid AvbIcpSignedRootBlob\n')
return False
if (self.signed_root_blob_size != 0) and (
self.signed_root_blob_size != self.signed_root_blob.SIZE):
sys.stderr.write('ICP entry: invalid signed root blob size: '
'{}, should be {}\n'.format(
self.signed_root_blob_size,
self.signed_root_blob.SIZE))
return False
if self.proof_hash_count < 0:
sys.stderr.write('ICP entry: invalid proof count: {}\n'.format(
self.proof_hash_count))
return False
proof_size = 0
if self.proofs:
for proof in self.proofs:
proof_size += len(proof)
if self.proof_size != proof_size:
sys.stderr.write('ICP entry: invalid transparency log proof size: ')
sys.stderr.write('{}, calculated {}\n'.format(self.proof_size,
proof_size))
return False
elif self.proof_size != 0:
sys.stderr.write('ICP entry: invalid transparency log proof size '
'(should be 0): {}'.format(self.proof_size))
return False
if self.next_entry != 0 and self.next_entry != 1:
sys.stderr.write('ICP entry: invalid next entry value: {}\n'.format(
self.next_entry))
return False
return True
def print_desc(self, o):
"""Print the descriptor.
Arguments:
o: The object to write the output to.
"""
o.write(' Transparency Log: {}\n'.format(self.log_url))
o.write(' Leaf index: {}\n'.format(self.leaf_index))
o.write(' Next entry: {}\n'.format(self.next_entry))
o.write(' ICP hashes: ')
for i, proof_hash in enumerate(self.proofs):
if i != 0:
o.write(' ' * 24)
o.write('{}\n'.format(binascii.hexlify(proof_hash)))
class AvbIcpBlob(object):
"""A class for the transparency log inclusion proof blob.
This encapsulates an AFTL ICP section with all information required to
validate an inclusion proof.
Attributes:
icp_header: A header for the section.
icp_entries: A list of AvbIcpEntry objects representing the inclusion
proofs.
"""
def __init__(self, data=None):
"""Initializes a new AvbIcpBlob section.
Arguments:
data: If not None, must be a bytearray representing an AvbIcpBlob.
Raises:
AvbError: If the data does not represent a well-formed AvbIcpBlob.
"""
if data:
icp_header_bytes = data[0:AvbIcpHeader.SIZE]
self.icp_header = AvbIcpHeader(icp_header_bytes)
if not self.icp_header.is_valid():
raise AvbError('Invalid ICP header.')
icp_count = self.icp_header.icp_count
algorithm_id = self.icp_header.algorithm
# TODO(danielaustin): make use of proof_hash_size.
# pylint: disable=unused-variable
proof_hash_size = lookup_hash_size_by_type(algorithm_id)
# Jump past the header for entry deserialization.
icp_index = AvbIcpHeader.SIZE
# Validate each entry.
self.icp_entries = []
# Add_icp_entry updates entries and header, so set header count to
# compensate.
self.icp_header.icp_count = 0
for i in range(icp_count):
# Get the entry header from the ICP blob.
cur_icp_entry = AvbIcpEntry(data[icp_index:])
cur_icp_entry_size = cur_icp_entry.get_expected_size()
# Now validate the entry structure.
if not cur_icp_entry.is_valid():
raise AvbError('Validation of ICP entry failed.')
self.add_icp_entry(cur_icp_entry)
# Check if there is a next entry.
if cur_icp_entry.next_entry == 0:
if i != icp_count - 1:
raise AvbError('ICP entry count mismatch')
break
icp_index += cur_icp_entry_size
else:
self.icp_header = AvbIcpHeader()
self.icp_entries = []
if not self.is_valid():
raise AvbError('Malformed ICP blob')
def set_algorithm(self, algorithm_id):
"""Sets algorithm to be used by the inclusion proofs in AvbIcpBlob."""
self.icp_header.algorithm = algorithm_id
def add_icp_entry(self, avb_icp_entry):
"""Adds a new AvbIcpEntry to the AvbIcpBlob, updating fields as necessary.
Arguments:
avb_icp_entry: An AvbIcpEntry structure.
"""
# Set the next entry field to denote that a new ICP entry will follow.
if self.icp_entries:
self.icp_entries[-1].next_entry = 1
self.icp_entries.append(avb_icp_entry)
self.icp_header.icp_count += 1
def save(self, output):
"""Serializes the AvbIcpBlob to disk.
Arguments:
output: The object to write the blob to.
Raises:
AvbError: If invalid blob structure.
"""
output.write(self.encode())
def encode(self):
"""Serialize the AvbIcpBlob to a bytearray().
Returns:
A bytearray() with the encoded header.
Raises:
AvbError: If invalid blob structure.
"""
# The header and entries are guaranteed to be valid when encode is called.
# Check the entire structure as a whole.
if not self.is_valid():
raise AvbError('Invalid AvbIcpBlob structure.')
icp_blob = bytearray()
icp_blob.extend(self.icp_header.encode())
for icp_entry in self.icp_entries:
icp_blob.extend(icp_entry.encode())
return icp_blob
def is_valid(self):
"""Ensures that values in the AvbIcpBlob are sane.
Returns:
True if the values in the AvbIcpBlob are sane, False otherwise.
"""
if not self.icp_header.is_valid():
return False
if self.icp_header.icp_count != len(self.icp_entries):
return False
for icp_entry in self.icp_entries:
if not icp_entry.is_valid():
return False
return True
# AFTL Merkle Tree Functionality
# TODO(danielaustin): Encapsulate this behavior in a class.
def rfc6962_hash_leaf(leaf):
"""RFC6962 hashing function for hashing leaves of a Merkle tree.
Arguments:
leaf: A bytearray containing the Merkle tree leaf to be hashed.
Returns:
A bytearray containing the RFC6962 SHA256 hash of the leaf.
"""
hasher = hashlib.sha256()
# RFC6962 states a '0' byte should be prepended to the data.
# This is done in conjunction with the '1' byte for non-leaf
# nodes for 2nd preimage attack resistance.
hasher.update(b'\x00')
hasher.update(leaf)
return hasher.digest()
def rfc6962_hash_children(l, r):
"""Calculates the inner Merkle tree node hash of child nodes l and r.
Arguments:
l: A bytearray containing the left child node to be hashed.
r: A bytearray containing the right child node to be hashed.
Returns:
A bytearray containing the RFC6962 SHA256 hash of 1|l|r.
"""
hasher = hashlib.sha256()
# RFC6962 states a '1' byte should be prepended to the concatenated data.
# This is done in conjunction with the '0' byte for leaf
# nodes for 2nd preimage attack resistance.
hasher.update(b'\x01')
hasher.update(l)
hasher.update(r)
return hasher.digest()
def chain_border_right(seed, proof):
"""Computes a subtree hash along the left-side tree border.
Arguments:
seed: A bytearray containing the starting hash.
proof: A list of bytearrays representing the hashes in the inclusion proof.
Returns:
A bytearray containing the left-side subtree hash.
"""
for h in proof:
seed = rfc6962_hash_children(h, seed)
return seed
def chain_inner(seed, proof, leaf_index):
"""Computes a subtree hash on or below the tree's right border.
Arguments:
seed: A bytearray containing the starting hash.
proof: A list of bytearrays representing the hashes in the inclusion proof.
leaf_index: The current leaf index.
Returns:
A bytearray containing the subtree hash.
"""
for i, h in enumerate(proof):
if leaf_index >> i & 1 == 0:
seed = rfc6962_hash_children(seed, h)
else:
seed = rfc6962_hash_children(h, seed)
return seed
def root_from_icp(leaf_index, tree_size, proof, leaf_hash):
"""Calculates the expected Merkle tree root hash.
Arguments:
leaf_index: The current leaf index.
tree_size: The number of nodes in the Merkle tree.
proof: A list of bytearrays containing the inclusion proof.
leaf_hash: A bytearray containing the initial leaf hash.
Returns:
A bytearray containing the calculated Merkle tree root hash.
Raises:
AvbError: If invalid parameters are passed in.
"""
if leaf_index < 0:
raise AvbError('Invalid leaf_index value: {}'.format(leaf_index))
if tree_size < 0:
raise AvbError('Invalid tree_size value: {}'.format(tree_size))
if leaf_index >= tree_size:
err_str = 'leaf_index cannot be equal or larger than tree_size: {}, {}'
raise AvbError(err_str.format(leaf_index, tree_size))
# Calculate the point to split the proof into two parts.
# The split is where the paths to leaves diverge.
inner = (leaf_index ^ (tree_size - 1)).bit_length()
result = chain_inner(leaf_hash, proof[:inner], leaf_index)
result = chain_border_right(result, proof[inner:])
return result
class AvbVBMetaHeader(object):
"""A class for parsing and writing AVB vbmeta images.
The attributes correspond to the |AvbVBMetaImageHeader| struct defined in
avb_vbmeta_image.h.
Attributes:
magic: Four bytes equal to "AVB0" (AVB_MAGIC).
required_libavb_version_major: The major version of libavb required for this
header.
required_libavb_version_minor: The minor version of libavb required for this
header.
authentication_data_block_size: The size of the signature block.
auxiliary_data_block_size: The size of the auxiliary data block.
algorithm_type: The verification algorithm used, see |AvbAlgorithmType|
enum.
hash_offset: Offset into the "Authentication data" block of hash data.
hash_size: Length of the hash data.
signature_offset: Offset into the "Authentication data" block of signature
data.
signature_size: Length of the signature data.
public_key_offset: Offset into the "Auxiliary data" block of public key
data.
public_key_size: Length of the public key data.
public_key_metadata_offset: Offset into the "Auxiliary data" block of public
key metadata.
public_key_metadata_size: Length of the public key metadata. Must be set to
zero if there is no public key metadata.
descriptors_offset: Offset into the "Auxiliary data" block of descriptor
data.
descriptors_size: Length of descriptor data.
rollback_index: The rollback index which can be used to prevent rollback to
older versions.
flags: Flags from the AvbVBMetaImageFlags enumeration. This must be set to
zero if the vbmeta image is not a top-level image.
release_string: The release string from avbtool, e.g. "avbtool 1.0.0" or
"avbtool 1.0.0 xyz_board Git-234abde89". Is guaranteed to be NUL
terminated. Applications must not make assumptions about how this
string is formatted.
"""
SIZE = 256
# Keep in sync with |reserved0| and |reserved| field of
# |AvbVBMetaImageHeader|.
RESERVED0 = 4
RESERVED = 80
# Keep in sync with |AvbVBMetaImageHeader|.
FORMAT_STRING = ('!4s2L' # magic, 2 x version
'2Q' # 2 x block size
'L' # algorithm type
'2Q' # offset, size (hash)
'2Q' # offset, size (signature)
'2Q' # offset, size (public key)
'2Q' # offset, size (public key metadata)
'2Q' # offset, size (descriptors)
'Q' # rollback_index
'L' + # flags
str(RESERVED0) + 'x' + # padding for reserved bytes
'47sx' + # NUL-terminated release string
str(RESERVED) + 'x') # padding for reserved bytes
def __init__(self, data=None):
"""Initializes a new header object.
Arguments:
data: If not None, must be a bytearray of size 8192.
Raises:
Exception: If the given data is malformed.
"""
assert struct.calcsize(self.FORMAT_STRING) == self.SIZE
if data:
(self.magic, self.required_libavb_version_major,
self.required_libavb_version_minor,
self.authentication_data_block_size, self.auxiliary_data_block_size,
self.algorithm_type, self.hash_offset, self.hash_size,
self.signature_offset, self.signature_size, self.public_key_offset,
self.public_key_size, self.public_key_metadata_offset,
self.public_key_metadata_size, self.descriptors_offset,
self.descriptors_size,
self.rollback_index,
self.flags,
self.release_string) = struct.unpack(self.FORMAT_STRING, data)
# Nuke NUL-bytes at the end of the string.
if self.magic != 'AVB0':
raise AvbError('Given image does not look like a vbmeta image.')
else:
self.magic = 'AVB0'
# Start by just requiring version 1.0. Code that adds features
# in a future version can use bump_required_libavb_version_minor() to
# bump the minor.
self.required_libavb_version_major = AVB_VERSION_MAJOR
self.required_libavb_version_minor = 0
self.authentication_data_block_size = 0
self.auxiliary_data_block_size = 0
self.algorithm_type = 0
self.hash_offset = 0
self.hash_size = 0
self.signature_offset = 0
self.signature_size = 0
self.public_key_offset = 0
self.public_key_size = 0
self.public_key_metadata_offset = 0
self.public_key_metadata_size = 0
self.descriptors_offset = 0
self.descriptors_size = 0
self.rollback_index = 0
self.flags = 0
self.release_string = get_release_string()
def bump_required_libavb_version_minor(self, minor):
"""Function to bump required_libavb_version_minor.
Call this when writing data that requires a specific libavb
version to parse it.
Arguments:
minor: The minor version of libavb that has support for the feature.
"""
self.required_libavb_version_minor = (
max(self.required_libavb_version_minor, minor))
def save(self, output):
"""Serializes the header (256 bytes) to disk.
Arguments:
output: The object to write the output to.
"""
output.write(struct.pack(
self.FORMAT_STRING, self.magic, self.required_libavb_version_major,
self.required_libavb_version_minor, self.authentication_data_block_size,
self.auxiliary_data_block_size, self.algorithm_type, self.hash_offset,
self.hash_size, self.signature_offset, self.signature_size,
self.public_key_offset, self.public_key_size,
self.public_key_metadata_offset, self.public_key_metadata_size,
self.descriptors_offset, self.descriptors_size, self.rollback_index,
self.flags, self.release_string))
def encode(self):
"""Serializes the header (256) to a bytearray().
Returns:
A bytearray() with the encoded header.
"""
return struct.pack(self.FORMAT_STRING, self.magic,
self.required_libavb_version_major,
self.required_libavb_version_minor,
self.authentication_data_block_size,
self.auxiliary_data_block_size, self.algorithm_type,
self.hash_offset, self.hash_size, self.signature_offset,
self.signature_size, self.public_key_offset,
self.public_key_size, self.public_key_metadata_offset,
self.public_key_metadata_size, self.descriptors_offset,
self.descriptors_size, self.rollback_index, self.flags,
self.release_string)
class Avb(object):
"""Business logic for avbtool command-line tool."""
# Keep in sync with avb_ab_flow.h.
AB_FORMAT_NO_CRC = '!4sBB2xBBBxBBBx12x'
AB_MAGIC = '\0AB0'
AB_MAJOR_VERSION = 1
AB_MINOR_VERSION = 0
AB_MISC_METADATA_OFFSET = 2048
# Constants for maximum metadata size. These are used to give
# meaningful errors if the value passed in via --partition_size is
# too small and when --calc_max_image_size is used. We use
# conservative figures.
MAX_VBMETA_SIZE = 64 * 1024
MAX_FOOTER_SIZE = 4096
def extract_vbmeta_image(self, output, image_filename, padding_size):
"""Implements the 'extract_vbmeta_image' command.
Arguments:
output: Write vbmeta struct to this file.
image_filename: File to extract vbmeta data from (with a footer).
padding_size: If not 0, pads output so size is a multiple of the number.
Raises:
AvbError: If there's no footer in the image.
"""
image = ImageHandler(image_filename)
(footer, _, _, _) = self._parse_image(image)
if not footer:
raise AvbError('Given image does not have a footer.')
image.seek(footer.vbmeta_offset)
vbmeta_blob = image.read(footer.vbmeta_size)
output.write(vbmeta_blob)
if padding_size > 0:
padded_size = round_to_multiple(len(vbmeta_blob), padding_size)
padding_needed = padded_size - len(vbmeta_blob)
output.write('\0' * padding_needed)
def erase_footer(self, image_filename, keep_hashtree):
"""Implements the 'erase_footer' command.
Arguments:
image_filename: File to erase a footer from.
keep_hashtree: If True, keep the hashtree and FEC around.
Raises:
AvbError: If there's no footer in the image.
"""
image = ImageHandler(image_filename)
(footer, _, descriptors, _) = self._parse_image(image)
if not footer:
raise AvbError('Given image does not have a footer.')
new_image_size = None
if not keep_hashtree:
new_image_size = footer.original_image_size
else:
# If requested to keep the hashtree, search for a hashtree
# descriptor to figure out the location and size of the hashtree
# and FEC.
for desc in descriptors:
if isinstance(desc, AvbHashtreeDescriptor):
# The hashtree is always just following the main data so the
# new size is easily derived.
new_image_size = desc.tree_offset + desc.tree_size
# If the image has FEC codes, also keep those.
if desc.fec_offset > 0:
fec_end = desc.fec_offset + desc.fec_size
new_image_size = max(new_image_size, fec_end)
break
if not new_image_size:
raise AvbError('Requested to keep hashtree but no hashtree '
'descriptor was found.')
# And cut...
image.truncate(new_image_size)
def zero_hashtree(self, image_filename):
"""Implements the 'zero_hashtree' command.
Arguments:
image_filename: File to zero hashtree and FEC data from.
Raises:
AvbError: If there's no footer in the image.
"""
image = ImageHandler(image_filename)
(footer, _, descriptors, _) = self._parse_image(image)
if not footer:
raise AvbError('Given image does not have a footer.')
# Search for a hashtree descriptor to figure out the location and
# size of the hashtree and FEC.
ht_desc = None
for desc in descriptors:
if isinstance(desc, AvbHashtreeDescriptor):
ht_desc = desc
break
if not ht_desc:
raise AvbError('No hashtree descriptor was found.')
zero_ht_start_offset = ht_desc.tree_offset
zero_ht_num_bytes = ht_desc.tree_size
zero_fec_start_offset = None
zero_fec_num_bytes = 0
if ht_desc.fec_offset > 0:
if ht_desc.fec_offset != ht_desc.tree_offset + ht_desc.tree_size:
raise AvbError('Hash-tree and FEC data must be adjacent.')
zero_fec_start_offset = ht_desc.fec_offset
zero_fec_num_bytes = ht_desc.fec_size
zero_end_offset = (zero_ht_start_offset + zero_ht_num_bytes
+ zero_fec_num_bytes)
image.seek(zero_end_offset)
data = image.read(image.image_size - zero_end_offset)
# Write zeroes all over hashtree and FEC, except for the first eight bytes
# where a magic marker - ZeroHaSH - is placed. Place these markers in the
# beginning of both hashtree and FEC. (That way, in the future we can add
# options to 'avbtool zero_hashtree' so as to zero out only either/or.)
#
# Applications can use these markers to detect that the hashtree and/or
# FEC needs to be recomputed.
image.truncate(zero_ht_start_offset)
data_zeroed_firstblock = 'ZeRoHaSH' + '\0'*(image.block_size - 8)
image.append_raw(data_zeroed_firstblock)
image.append_fill('\0\0\0\0', zero_ht_num_bytes - image.block_size)
if zero_fec_start_offset:
image.append_raw(data_zeroed_firstblock)
image.append_fill('\0\0\0\0', zero_fec_num_bytes - image.block_size)
image.append_raw(data)
def resize_image(self, image_filename, partition_size):
"""Implements the 'resize_image' command.
Arguments:
image_filename: File with footer to resize.
partition_size: The new size of the image.
Raises:
AvbError: If there's no footer in the image.
"""
image = ImageHandler(image_filename)
if partition_size % image.block_size != 0:
raise AvbError('Partition size of {} is not a multiple of the image '
'block size {}.'.format(partition_size,
image.block_size))
(footer, _, _, _) = self._parse_image(image)
if not footer:
raise AvbError('Given image does not have a footer.')
# The vbmeta blob is always at the end of the data so resizing an
# image amounts to just moving the footer around.
vbmeta_end_offset = footer.vbmeta_offset + footer.vbmeta_size
if vbmeta_end_offset % image.block_size != 0:
vbmeta_end_offset += image.block_size - (vbmeta_end_offset
% image.block_size)
if partition_size < vbmeta_end_offset + 1*image.block_size:
raise AvbError('Requested size of {} is too small for an image '
'of size {}.'
.format(partition_size,
vbmeta_end_offset + 1*image.block_size))
# Cut at the end of the vbmeta blob and insert a DONT_CARE chunk
# with enough bytes such that the final Footer block is at the end
# of partition_size.
image.truncate(vbmeta_end_offset)
image.append_dont_care(partition_size - vbmeta_end_offset -
1*image.block_size)
# Just reuse the same footer - only difference is that we're
# writing it in a different place.
footer_blob = footer.encode()
footer_blob_with_padding = ('\0'*(image.block_size - AvbFooter.SIZE) +
footer_blob)
image.append_raw(footer_blob_with_padding)
def set_ab_metadata(self, misc_image, slot_data):
"""Implements the 'set_ab_metadata' command.
The |slot_data| argument must be of the form 'A_priority:A_tries_remaining:
A_successful_boot:B_priority:B_tries_remaining:B_successful_boot'.
Arguments:
misc_image: The misc image to write to.
slot_data: Slot data as a string
Raises:
AvbError: If slot data is malformed.
"""
tokens = slot_data.split(':')
if len(tokens) != 6:
raise AvbError('Malformed slot data "{}".'.format(slot_data))
a_priority = int(tokens[0])
a_tries_remaining = int(tokens[1])
a_success = True if int(tokens[2]) != 0 else False
b_priority = int(tokens[3])
b_tries_remaining = int(tokens[4])
b_success = True if int(tokens[5]) != 0 else False
ab_data_no_crc = struct.pack(self.AB_FORMAT_NO_CRC,
self.AB_MAGIC,
self.AB_MAJOR_VERSION, self.AB_MINOR_VERSION,
a_priority, a_tries_remaining, a_success,
b_priority, b_tries_remaining, b_success)
# Force CRC to be unsigned, see https://bugs.python.org/issue4903 for why.
crc_value = binascii.crc32(ab_data_no_crc) & 0xffffffff
ab_data = ab_data_no_crc + struct.pack('!I', crc_value)
misc_image.seek(self.AB_MISC_METADATA_OFFSET)
misc_image.write(ab_data)
def info_image(self, image_filename, output):
"""Implements the 'info_image' command.
Arguments:
image_filename: Image file to get information from (file object).
output: Output file to write human-readable information to (file object).
"""
image = ImageHandler(image_filename)
o = output
(footer, header, descriptors, image_size) = self._parse_image(image)
if footer:
o.write('Footer version: {}.{}\n'.format(footer.version_major,
footer.version_minor))
o.write('Image size: {} bytes\n'.format(image_size))
o.write('Original image size: {} bytes\n'.format(
footer.original_image_size))
o.write('VBMeta offset: {}\n'.format(footer.vbmeta_offset))
o.write('VBMeta size: {} bytes\n'.format(footer.vbmeta_size))
o.write('--\n')
(alg_name, _) = lookup_algorithm_by_type(header.algorithm_type)
o.write('Minimum libavb version: {}.{}{}\n'.format(
header.required_libavb_version_major,
header.required_libavb_version_minor,
' (Sparse)' if image.is_sparse else ''))
o.write('Header Block: {} bytes\n'.format(AvbVBMetaHeader.SIZE))
o.write('Authentication Block: {} bytes\n'.format(
header.authentication_data_block_size))
o.write('Auxiliary Block: {} bytes\n'.format(
header.auxiliary_data_block_size))
o.write('Algorithm: {}\n'.format(alg_name))
o.write('Rollback Index: {}\n'.format(header.rollback_index))
o.write('Flags: {}\n'.format(header.flags))
o.write('Release String: \'{}\'\n'.format(
header.release_string.rstrip('\0')))
# Print descriptors.
num_printed = 0
o.write('Descriptors:\n')
for desc in descriptors:
desc.print_desc(o)
num_printed += 1
if num_printed == 0:
o.write(' (none)\n')
def info_image_icp(self, image_filename, output):
"""Implements the 'info_image_icp' command.
Arguments:
image_filename: Image file to get information from.
output: Output file to write human-readable information to (file object).
"""
image = ImageHandler(image_filename)
o = output
(footer, header, _, _) = self._parse_image(image)
offset = 0
if footer:
offset = footer.vbmeta_offset
image.seek(offset +
header.SIZE +
header.authentication_data_block_size +
header.auxiliary_data_block_size)
# TODO(jpm): Fix up AvbIcp* records so the length of data to be read
# can be determined more easily.
icp_bytes = image.read(100000)
if not icp_bytes or len(icp_bytes) < 4 or icp_bytes[0:4] != AvbIcpHeader.MAGIC:
sys.stderr.write('Image does not contain AFTL inclusion proofs.\n')
return
icp_blob = AvbIcpBlob(icp_bytes)
o.write('Android Firmware Transparency Descriptor:\n')
o.write(' Header:\n')
icp_blob.icp_header.print_desc(o)
for i, icp_entry in enumerate(icp_blob.icp_entries):
o.write(' Entry #{}:\n'.format(i + 1))
icp_entry.print_desc(o)
o.write(' Signed Root Blob:\n')
icp_entry.signed_root_blob.print_desc(o)
def verify_image(self, image_filename, key_path, expected_chain_partitions,
follow_chain_partitions, accept_zeroed_hashtree):
"""Implements the 'verify_image' command.
Arguments:
image_filename: Image file to get information from (file object).
key_path: None or check that embedded public key matches key at given
path.
expected_chain_partitions: List of chain partitions to check or None.
follow_chain_partitions:
If True, will follows chain partitions even when not specified with
the --expected_chain_partition option
accept_zeroed_hashtree: If True, don't fail if hashtree or FEC data is
zeroed out.
Raises:
AvbError: If verification of the image fails.
"""
expected_chain_partitions_map = {}
if expected_chain_partitions:
for cp in expected_chain_partitions:
cp_tokens = cp.split(':')
if len(cp_tokens) != 3:
raise AvbError('Malformed chained partition "{}".'.format(cp))
partition_name = cp_tokens[0]
rollback_index_location = int(cp_tokens[1])
file_path = cp_tokens[2]
pk_blob = open(file_path).read()
expected_chain_partitions_map[partition_name] = (
rollback_index_location, pk_blob)
image_dir = os.path.dirname(image_filename)
#image_ext = os.path.splitext(image_filename)[1]
image_ext = image_filename[image_filename.index('.'):]
key_blob = None
if key_path:
print('Verifying image {} using key at {}'.format(image_filename,
key_path))
key_blob = encode_rsa_key(key_path)
else:
print('Verifying image {} using embedded public key'.format(
image_filename))
image = ImageHandler(image_filename)
(footer, header, descriptors, _) = self._parse_image(image)
offset = 0
if footer:
offset = footer.vbmeta_offset
image.seek(offset)
vbmeta_blob = image.read(header.SIZE
+ header.authentication_data_block_size
+ header.auxiliary_data_block_size)
alg_name, _ = lookup_algorithm_by_type(header.algorithm_type)
if not verify_vbmeta_signature(header, vbmeta_blob):
raise AvbError('Signature check failed for {} vbmeta struct {}'
.format(alg_name, image_filename))
if key_blob:
# The embedded public key is in the auxiliary block at an offset.
key_offset = AvbVBMetaHeader.SIZE
key_offset += header.authentication_data_block_size
key_offset += header.public_key_offset
key_blob_in_vbmeta = vbmeta_blob[key_offset:key_offset
+ header.public_key_size]
if key_blob != key_blob_in_vbmeta:
raise AvbError('Embedded public key does not match given key.')
if footer:
print('vbmeta: Successfully verified footer and {} vbmeta struct in {}'
.format(alg_name, image.filename))
else:
print('vbmeta: Successfully verified {} vbmeta struct in {}'
.format(alg_name, image.filename))
for desc in descriptors:
if (isinstance(desc, AvbChainPartitionDescriptor)
and follow_chain_partitions
and expected_chain_partitions_map.get(desc.partition_name) is None):
# In this case we're processing a chain descriptor but don't have a
# --expect_chain_partition ... however --follow_chain_partitions was
# specified so we shouldn't error out in desc.verify().
print('{}: Chained but ROLLBACK_SLOT (which is {}) '
'and KEY (which has sha1 {}) not specified'
.format(desc.partition_name, desc.rollback_index_location,
hashlib.sha1(desc.public_key).hexdigest()))
elif not desc.verify(image_dir, image_ext, expected_chain_partitions_map,
image, accept_zeroed_hashtree):
raise AvbError('Error verifying descriptor.')
# Honor --follow_chain_partitions - add '--' to make the output more
# readable.
if (isinstance(desc, AvbChainPartitionDescriptor)
and follow_chain_partitions):
print('--')
chained_image_filename = os.path.join(image_dir,
desc.partition_name + image_ext)
self.verify_image(chained_image_filename, key_path, None, False,
accept_zeroed_hashtree)
def calculate_vbmeta_digest(self, image_filename, hash_algorithm, output):
"""Implements the 'calculate_vbmeta_digest' command.
Arguments:
image_filename: Image file to get information from (file object).
hash_algorithm: Hash algorithm used.
output: Output file to write human-readable information to (file object).
"""
image_dir = os.path.dirname(image_filename)
image_ext = os.path.splitext(image_filename)[1]
image = ImageHandler(image_filename)
(footer, header, descriptors, _) = self._parse_image(image)
offset = 0
if footer:
offset = footer.vbmeta_offset
size = (header.SIZE + header.authentication_data_block_size +
header.auxiliary_data_block_size)
image.seek(offset)
vbmeta_blob = image.read(size)
hasher = hashlib.new(name=hash_algorithm)
hasher.update(vbmeta_blob)
for desc in descriptors:
if isinstance(desc, AvbChainPartitionDescriptor):
ch_image_filename = os.path.join(image_dir,
desc.partition_name + image_ext)
ch_image = ImageHandler(ch_image_filename)
(ch_footer, ch_header, _, _) = self._parse_image(ch_image)
ch_offset = 0
ch_size = (ch_header.SIZE + ch_header.authentication_data_block_size +
ch_header.auxiliary_data_block_size)
if ch_footer:
ch_offset = ch_footer.vbmeta_offset
ch_image.seek(ch_offset)
ch_vbmeta_blob = ch_image.read(ch_size)
hasher.update(ch_vbmeta_blob)
digest = hasher.digest()
output.write('{}\n'.format(binascii.hexlify(digest)))
def calculate_kernel_cmdline(self, image_filename, hashtree_disabled, output):
"""Implements the 'calculate_kernel_cmdline' command.
Arguments:
image_filename: Image file to get information from (file object).
hashtree_disabled: If True, returns the cmdline for hashtree disabled.
output: Output file to write human-readable information to (file object).
"""
image = ImageHandler(image_filename)
_, _, descriptors, _ = self._parse_image(image)
image_dir = os.path.dirname(image_filename)
image_ext = os.path.splitext(image_filename)[1]
cmdline_descriptors = []
for desc in descriptors:
if isinstance(desc, AvbChainPartitionDescriptor):
ch_image_filename = os.path.join(image_dir,
desc.partition_name + image_ext)
ch_image = ImageHandler(ch_image_filename)
_, _, ch_descriptors, _ = self._parse_image(ch_image)
for ch_desc in ch_descriptors:
if isinstance(ch_desc, AvbKernelCmdlineDescriptor):
cmdline_descriptors.append(ch_desc)
elif isinstance(desc, AvbKernelCmdlineDescriptor):
cmdline_descriptors.append(desc)
kernel_cmdline_snippets = []
for desc in cmdline_descriptors:
use_cmdline = True
if ((desc.flags &
AvbKernelCmdlineDescriptor.FLAGS_USE_ONLY_IF_HASHTREE_NOT_DISABLED)
!= 0):
if hashtree_disabled:
use_cmdline = False
if (desc.flags &
AvbKernelCmdlineDescriptor.FLAGS_USE_ONLY_IF_HASHTREE_DISABLED) != 0:
if not hashtree_disabled:
use_cmdline = False
if use_cmdline:
kernel_cmdline_snippets.append(desc.kernel_cmdline)
output.write(' '.join(kernel_cmdline_snippets))
def _parse_image(self, image):
"""Gets information about an image.
The image can either be a vbmeta or an image with a footer.
Arguments:
image: An ImageHandler (vbmeta or footer) with a hashtree descriptor.
Returns:
A tuple where the first argument is a AvbFooter (None if there
is no footer on the image), the second argument is a
AvbVBMetaHeader, the third argument is a list of
AvbDescriptor-derived instances, and the fourth argument is the
size of |image|.
"""
assert isinstance(image, ImageHandler)
footer = None
image.seek(image.image_size - AvbFooter.SIZE)
try:
footer = AvbFooter(image.read(AvbFooter.SIZE))
except (LookupError, struct.error):
# Nope, just seek back to the start.
image.seek(0)
vbmeta_offset = 0
if footer:
vbmeta_offset = footer.vbmeta_offset
image.seek(vbmeta_offset)
h = AvbVBMetaHeader(image.read(AvbVBMetaHeader.SIZE))
auth_block_offset = vbmeta_offset + AvbVBMetaHeader.SIZE
aux_block_offset = auth_block_offset + h.authentication_data_block_size
desc_start_offset = aux_block_offset + h.descriptors_offset
image.seek(desc_start_offset)
descriptors = parse_descriptors(image.read(h.descriptors_size))
return footer, h, descriptors, image.image_size
def _load_vbmeta_blob(self, image):
"""Gets the vbmeta struct and associated sections.
The image can either be a vbmeta.img or an image with a footer.
Arguments:
image: An ImageHandler (vbmeta or footer).
Returns:
A blob with the vbmeta struct and other sections.
"""
assert isinstance(image, ImageHandler)
footer = None
image.seek(image.image_size - AvbFooter.SIZE)
try:
footer = AvbFooter(image.read(AvbFooter.SIZE))
except (LookupError, struct.error):
# Nope, just seek back to the start.
image.seek(0)
vbmeta_offset = 0
if footer:
vbmeta_offset = footer.vbmeta_offset
image.seek(vbmeta_offset)
h = AvbVBMetaHeader(image.read(AvbVBMetaHeader.SIZE))
image.seek(vbmeta_offset)
data_size = AvbVBMetaHeader.SIZE
data_size += h.authentication_data_block_size
data_size += h.auxiliary_data_block_size
return image.read(data_size)
def _get_cmdline_descriptors_for_hashtree_descriptor(self, ht):
"""Generate kernel cmdline descriptors for dm-verity.
Arguments:
ht: A AvbHashtreeDescriptor
Returns:
A list with two AvbKernelCmdlineDescriptor with dm-verity kernel cmdline
instructions. There is one for when hashtree is not disabled and one for
when it is.
"""
c = 'dm="1 vroot none ro 1,'
c += '0' # start
c += ' {}'.format((ht.image_size // 512)) # size (# sectors)
c += ' verity {}'.format(ht.dm_verity_version) # type and version
c += ' PARTUUID=$(ANDROID_SYSTEM_PARTUUID)' # data_dev
c += ' PARTUUID=$(ANDROID_SYSTEM_PARTUUID)' # hash_dev
c += ' {}'.format(ht.data_block_size) # data_block
c += ' {}'.format(ht.hash_block_size) # hash_block
c += ' {}'.format(ht.image_size // ht.data_block_size) # #blocks
c += ' {}'.format(ht.image_size // ht.data_block_size) # hash_offset
c += ' {}'.format(ht.hash_algorithm) # hash_alg
c += ' {}'.format(str(ht.root_digest).encode('hex')) # root_digest
c += ' {}'.format(str(ht.salt).encode('hex')) # salt
if ht.fec_num_roots > 0:
c += ' 10' # number of optional args
c += ' $(ANDROID_VERITY_MODE)'
c += ' ignore_zero_blocks'
c += ' use_fec_from_device PARTUUID=$(ANDROID_SYSTEM_PARTUUID)'
c += ' fec_roots {}'.format(ht.fec_num_roots)
# Note that fec_blocks is the size that FEC covers, *not* the
# size of the FEC data. Since we use FEC for everything up until
# the FEC data, it's the same as the offset.
c += ' fec_blocks {}'.format(ht.fec_offset // ht.data_block_size)
c += ' fec_start {}'.format(ht.fec_offset // ht.data_block_size)
else:
c += ' 2' # number of optional args
c += ' $(ANDROID_VERITY_MODE)'
c += ' ignore_zero_blocks'
c += '" root=/dev/dm-0'
# Now that we have the command-line, generate the descriptor.
desc = AvbKernelCmdlineDescriptor()
desc.kernel_cmdline = c
desc.flags = (
AvbKernelCmdlineDescriptor.FLAGS_USE_ONLY_IF_HASHTREE_NOT_DISABLED)
# The descriptor for when hashtree verification is disabled is a lot
# simpler - we just set the root to the partition.
desc_no_ht = AvbKernelCmdlineDescriptor()
desc_no_ht.kernel_cmdline = 'root=PARTUUID=$(ANDROID_SYSTEM_PARTUUID)'
desc_no_ht.flags = (
AvbKernelCmdlineDescriptor.FLAGS_USE_ONLY_IF_HASHTREE_DISABLED)
return [desc, desc_no_ht]
def _get_cmdline_descriptors_for_dm_verity(self, image):
"""Generate kernel cmdline descriptors for dm-verity.
Arguments:
image: An ImageHandler (vbmeta or footer) with a hashtree descriptor.
Returns:
A list with two AvbKernelCmdlineDescriptor with dm-verity kernel cmdline
instructions. There is one for when hashtree is not disabled and one for
when it is.
Raises:
AvbError: If |image| doesn't have a hashtree descriptor.
"""
(_, _, descriptors, _) = self._parse_image(image)
ht = None
for desc in descriptors:
if isinstance(desc, AvbHashtreeDescriptor):
ht = desc
break
if not ht:
raise AvbError('No hashtree descriptor in given image')
return self._get_cmdline_descriptors_for_hashtree_descriptor(ht)
# TODO(danielaustin): Add unit tests.
def request_inclusion_proof(self, transparency_log, vbmeta_blob,
version_inc, manufacturer_key_path):
"""Packages and sends a request to the specified transparency log.
Arguments:
transparency_log: String containing the URL of a transparency log server.
vbmeta_blob: A bytearray with the vbmeta blob.
version_inc: Subcomponent of the build fingerprint.
manufacturer_key_path: Path to key used to sign messages sent to the
transparency log servers.
Returns:
An AvbIcpEntry with the inclusion proof for the log entry.
Raises:
AvbError: If grpc or the proto modules cannot be loaded, if there is an
error communicating with the log or if the manufacturer_key_path
cannot be decoded.
"""
# Import grpc and proto.api_pb2_grpc now to avoid global dependencies.
try:
import grpc
import proto.api_pb2_grpc
except ImportError as e:
err_str = 'grpc can be installed with python pip install grpcio.\n'
raise AvbError('Failed to import module: ({}).\n{}'.format(e, err_str))
# Set up the gRPC channel with the transparency log.
sys.stdout.write('Preparing to request inclusion proof from {}. This could '
'take ~30 seconds for the process to complete.\n'.format(
transparency_log))
channel = grpc.insecure_channel(transparency_log)
stub = proto.api_pb2_grpc.AFTLogStub(channel)
# Calculate the hash of the vbmeta image.
hasher = hashlib.sha256()
hasher.update(vbmeta_blob)
vbmeta_hash = hasher.digest()
# Extract the key data from the PEM file.
manufacturer_key_data = rsa_key_read_pem_bytes(manufacturer_key_path)
# Calculate the hash of the manufacturer key data.
hasher = hashlib.sha256()
hasher.update(manufacturer_key_data)
m_key_hash = hasher.digest()
# Create an AddFirmwareInfoRequest protobuf for transmission to the
# transparency log.
fw_info = proto.aftl_pb2.FirmwareInfo(vbmeta_hash=vbmeta_hash,
version_incremental=version_inc,
manufacturer_key_hash=m_key_hash)
# TODO(danielaustin): Sign the message with the manufacturer key.
sfw_info = proto.aftl_pb2.SignedFirmwareInfo(info=fw_info)
request = proto.api_pb2.AddFirmwareInfoRequest(vbmeta=bytes(
str(vbmeta_blob)), fw_info=sfw_info)
# Attempt to transmit to the transparency log.
try:
# TODO(danielaustin): Set a reasonable timeout deadline here.
sys.stdout.write('ICP is about to be requested from transparency log '
'with domain {}.\n'.format(transparency_log))
response = stub.AddFirmwareInfo(request)
except grpc.RpcError as e:
raise AvbError('Error: grpc failure ({})'.format(e))
# Return an AvbIcpEntry representing this response.
icp_entry = AvbIcpEntry()
icp_entry.translate_response(transparency_log, response)
return icp_entry
def make_vbmeta_image(self, output, chain_partitions, algorithm_name,
key_path, public_key_metadata_path, rollback_index,
flags, props, props_from_file, kernel_cmdlines,
setup_rootfs_from_kernel,
include_descriptors_from_image,
signing_helper,
signing_helper_with_files,
release_string,
append_to_release_string,
print_required_libavb_version,
padding_size):
"""Implements the 'make_vbmeta_image' command.
Arguments:
output: File to write the image to.
chain_partitions: List of partitions to chain or None.
algorithm_name: Name of algorithm to use.
key_path: Path to key to use or None.
public_key_metadata_path: Path to public key metadata or None.
rollback_index: The rollback index to use.
flags: Flags value to use in the image.
props: Properties to insert (list of strings of the form 'key:value').
props_from_file: Properties to insert (list of strings 'key:<path>').
kernel_cmdlines: Kernel cmdlines to insert (list of strings).
setup_rootfs_from_kernel: None or file to generate from.
include_descriptors_from_image: List of file objects with descriptors.
signing_helper: Program which signs a hash and return signature.
signing_helper_with_files: Same as signing_helper but uses files instead.
release_string: None or avbtool release string to use instead of default.
append_to_release_string: None or string to append.
print_required_libavb_version: True to only print required libavb version.
padding_size: If not 0, pads output so size is a multiple of the number.
Raises:
AvbError: If a chained partition is malformed.
"""
# If we're asked to calculate minimum required libavb version, we're done.
if print_required_libavb_version:
if include_descriptors_from_image:
# Use the bump logic in AvbVBMetaHeader to calculate the max required
# version of all included descriptors.
tmp_header = AvbVBMetaHeader()
for image in include_descriptors_from_image:
(_, image_header, _, _) = self._parse_image(ImageHandler(image.name))
tmp_header.bump_required_libavb_version_minor(
image_header.required_libavb_version_minor)
print('1.{}'.format(tmp_header.required_libavb_version_minor))
else:
# Descriptors aside, all vbmeta features are supported in 1.0.
print('1.0')
return
if not output:
raise AvbError('No output file given')
descriptors = []
ht_desc_to_setup = None
vbmeta_blob = self._generate_vbmeta_blob(
algorithm_name, key_path, public_key_metadata_path, descriptors,
chain_partitions, rollback_index, flags, props, props_from_file,
kernel_cmdlines, setup_rootfs_from_kernel, ht_desc_to_setup,
include_descriptors_from_image, signing_helper,
signing_helper_with_files, release_string,
append_to_release_string, 0)
# Write entire vbmeta blob (header, authentication, auxiliary).
output.seek(0)
output.write(vbmeta_blob)
if padding_size > 0:
padded_size = round_to_multiple(len(vbmeta_blob), padding_size)
padding_needed = padded_size - len(vbmeta_blob)
output.write('\0' * padding_needed)
def make_icp_from_vbmeta(self, vbmeta_image_path, output, algorithm,
signing_helper, signing_helper_with_files,
version_incremental, transparency_log_servers,
transparency_log_pub_keys, manufacturer_key,
padding_size):
"""Generates a vbmeta image with inclusion proof given a vbmeta image.
This blob (struct AvbIcpBlob) contains the information required to
validate an inclusion proof for a specific vbmeta image. It consists
of a header (struct AvbIcpHeader) and zero or more entry structures
(struct AvbIcpEntry) that contain the vbmeta leaf hash, tree size,
root hash, inclusion proof hashes, and the signature for the root hash.
The vbmeta image, its hash, the version_incremental part of the build
fingerprint, and the hash of the manufacturer key are sent to the
transparency log, with the message signed by the manufacturer key.
An inclusion proof is calculated and returned. This inclusion proof is
then packaged in a AvbIcpBlob structure. The existing vbmeta data is
copied to a new file, appended with the AvbIcpBlob data, and written to
output. Validation of the inclusion proof does not require
communication with the transparency log.
Arguments:
vbmeta_image_path: Path to a vbmeta image file.
output: File to write the results to.
algorithm: The algorithm ID for signing and hashing (see ALGORITHMS). This
will be used for hash and signature size calculation and padding.
signing_helper: Program which signs a hash and returns a signature.
signing_helper_with_files: Same as signing_helper but uses files instead.
version_incremental: A string representing the subcomponent of the
build fingerprint used to identify the vbmeta in the transparency log.
transparency_log_servers: List of strings containing URLs of transparency
log servers where inclusion proofs are requested from.
transparency_log_pub_keys: List of paths to PEM files containing trusted
public keys that correspond with the transparency_logs. There must be
the same number of keys as log servers and they must be in the same
order, that is, transparency_log_pub_keys[n] corresponds to
transparency_log_servers[n].
manufacturer_key: Path to PEM file containting the key file used to sign
messages sent to the transparency log servers.
padding_size: If not 0, pads output so size is a multiple of the number.
Returns:
True if the inclusion proofs could be fetched from the transparency log
servers and could be successfully validated, False otherwise.
Raises:
AvbError: If any parameters are invalid, communication with the log
fails or the structures are malformed.
"""
# TODO(danielaustin): Determine the best way to handle chained vbmeta
# structures. Currently, we only put the main one in the transparency
# log.
# Validates command line parameters.
if not vbmeta_image_path:
raise AvbError('No vbmeta image path found.')
if not transparency_log_servers:
raise AvbError('No transparency log servers given.')
if not transparency_log_pub_keys:
raise AvbError('No transparency log public keys given.')
if len(transparency_log_servers) != len(transparency_log_pub_keys):
raise AvbError('Transparency log count and public key count mismatch: '
'{} servers and {} public keys'.format(
len(transparency_log_servers),
len(transparency_log_pub_keys)))
if not manufacturer_key:
raise AvbError('No manufacturer key path given.')
# TODO(danielaustin): add support for signing_helper and
# signing_helper_with_files
if signing_helper is not None or signing_helper_with_files is not None:
raise AvbError('signing_helper support not yet implemented for ICP.')
try:
algorithm_id = ALGORITHMS[algorithm].algorithm_type
except KeyError:
raise AvbError('Unknown algorithm with name {}'.format(algorithm))
# Retrieves vbmeta structure from given partition image.
image = ImageHandler(vbmeta_image_path)
(footer, header, _, _) = self._parse_image(image)
offset = 0
if footer:
offset = footer.vbmeta_offset
image.seek(offset)
vbmeta_blob = image.read(header.SIZE +
header.authentication_data_block_size +
header.auxiliary_data_block_size)
# Fetches inclusion proofs for vbmeta structure from all transparency logs.
icp_entries = []
for i, transparency_log in enumerate(transparency_log_servers):
try:
icp_entry = self.request_inclusion_proof(transparency_log, vbmeta_blob,
version_incremental,
manufacturer_key)
if not icp_entry.verify_icp(transparency_log_pub_keys[i]):
sys.stderr.write('The ICP from {} could not be verified\n'.format(
transparency_log))
icp_entries.append(icp_entry)
except AvbError as e:
sys.stderr.write('AvbError: {}'.format(e))
# The inclusion proof request failed.
# Continue and see if another will succeed.
continue
if not icp_entries:
sys.stderr.write('No inclusion proofs could be validated from any log.\n')
return False
# Prepares the inclusion proof blob to be appended to the vbmeta image.
icp_blob = AvbIcpBlob()
icp_blob.set_algorithm(algorithm_id)
for icp_entry in icp_entries:
icp_blob.add_icp_entry(icp_entry)
if not icp_blob.is_valid():
sys.stderr.write('Resulting AvbIcpBlob structure is malformed\n.')
return False
# Write the original vbmeta blob, followed by the AvbIcpBlob.
if footer: # Checks if it is a chained partition.
# TODO(danielaustin): Add support for chained partitions like system.img
# using similar functionality as implemented in append_vbmeta_image().
sys.stderr.write('Image has a footer and ICP for this format is not '
'implemented.')
return False
# Writes vbmeta image with inclusion proof into a new vbmeta image.
output.seek(0)
output.write(vbmeta_blob)
encoded_icp_blob = icp_blob.encode()
output.write(encoded_icp_blob)
if padding_size > 0:
blob_size = len(vbmeta_blob) + len(encoded_icp_blob)
padded_size = round_to_multiple(blob_size, padding_size)
padding_needed = padded_size - blob_size
output.write('\0' * padding_needed)
return True
def _generate_vbmeta_blob(self, algorithm_name, key_path,
public_key_metadata_path, descriptors,
chain_partitions,
rollback_index, flags, props, props_from_file,
kernel_cmdlines,
setup_rootfs_from_kernel,
ht_desc_to_setup,
include_descriptors_from_image, signing_helper,
signing_helper_with_files,
release_string, append_to_release_string,
required_libavb_version_minor):
"""Generates a VBMeta blob.
This blob contains the header (struct AvbVBMetaHeader), the
authentication data block (which contains the hash and signature
for the header and auxiliary block), and the auxiliary block
(which contains descriptors, the public key used, and other data).
The |key| parameter can |None| only if the |algorithm_name| is
'NONE'.
Arguments:
algorithm_name: The algorithm name as per the ALGORITHMS dict.
key_path: The path to the .pem file used to sign the blob.
public_key_metadata_path: Path to public key metadata or None.
descriptors: A list of descriptors to insert or None.
chain_partitions: List of partitions to chain or None.
rollback_index: The rollback index to use.
flags: Flags to use in the image.
props: Properties to insert (List of strings of the form 'key:value').
props_from_file: Properties to insert (List of strings 'key:<path>').
kernel_cmdlines: Kernel cmdlines to insert (list of strings).
setup_rootfs_from_kernel: None or file to generate
dm-verity kernel cmdline from.
ht_desc_to_setup: If not None, an AvbHashtreeDescriptor to
generate dm-verity kernel cmdline descriptors from.
include_descriptors_from_image: List of file objects for which
to insert descriptors from.
signing_helper: Program which signs a hash and return signature.
signing_helper_with_files: Same as signing_helper but uses files instead.
release_string: None or avbtool release string.
append_to_release_string: None or string to append.
required_libavb_version_minor: Use at least this required minor version.
Returns:
A bytearray() with the VBMeta blob.
Raises:
Exception: If the |algorithm_name| is not found, if no key has
been given and the given algorithm requires one, or the key is
of the wrong size.
"""
try:
alg = ALGORITHMS[algorithm_name]
except KeyError:
raise AvbError('Unknown algorithm with name {}'.format(algorithm_name))
if not descriptors:
descriptors = []
h = AvbVBMetaHeader()
h.bump_required_libavb_version_minor(required_libavb_version_minor)
# Insert chained partition descriptors, if any
if chain_partitions:
used_locations = {}
for cp in chain_partitions:
cp_tokens = cp.split(':')
if len(cp_tokens) != 3:
raise AvbError('Malformed chained partition "{}".'.format(cp))
partition_name = cp_tokens[0]
rollback_index_location = int(cp_tokens[1])
file_path = cp_tokens[2]
# Check that the same rollback location isn't being used by
# multiple chained partitions.
if used_locations.get(rollback_index_location):
raise AvbError('Rollback Index Location {} is already in use.'.format(
rollback_index_location))
used_locations[rollback_index_location] = True
desc = AvbChainPartitionDescriptor()
desc.partition_name = partition_name
desc.rollback_index_location = rollback_index_location
if desc.rollback_index_location < 1:
raise AvbError('Rollback index location must be 1 or larger.')
desc.public_key = open(file_path, 'rb').read()
descriptors.append(desc)
# Descriptors.
encoded_descriptors = bytearray()
for desc in descriptors:
encoded_descriptors.extend(desc.encode())
# Add properties.
if props:
for prop in props:
idx = prop.find(':')
if idx == -1:
raise AvbError('Malformed property "{}".'.format(prop))
# pylint: disable=redefined-variable-type
desc = AvbPropertyDescriptor()
desc.key = prop[0:idx]
desc.value = prop[(idx + 1):]
encoded_descriptors.extend(desc.encode())
if props_from_file:
for prop in props_from_file:
idx = prop.find(':')
if idx == -1:
raise AvbError('Malformed property "{}".'.format(prop))
desc = AvbPropertyDescriptor()
desc.key = prop[0:idx]
desc.value = prop[(idx + 1):]
file_path = prop[(idx + 1):]
desc.value = open(file_path, 'rb').read()
encoded_descriptors.extend(desc.encode())
# Add AvbKernelCmdline descriptor for dm-verity from an image, if requested.
if setup_rootfs_from_kernel:
image_handler = ImageHandler(
setup_rootfs_from_kernel.name)
cmdline_desc = self._get_cmdline_descriptors_for_dm_verity(image_handler)
encoded_descriptors.extend(cmdline_desc[0].encode())
encoded_descriptors.extend(cmdline_desc[1].encode())
# Add AvbKernelCmdline descriptor for dm-verity from desc, if requested.
if ht_desc_to_setup:
cmdline_desc = self._get_cmdline_descriptors_for_hashtree_descriptor(
ht_desc_to_setup)
encoded_descriptors.extend(cmdline_desc[0].encode())
encoded_descriptors.extend(cmdline_desc[1].encode())
# Add kernel command-lines.
if kernel_cmdlines:
for i in kernel_cmdlines:
desc = AvbKernelCmdlineDescriptor()
desc.kernel_cmdline = i
encoded_descriptors.extend(desc.encode())
# Add descriptors from other images.
if include_descriptors_from_image:
descriptors_dict = dict()
for image in include_descriptors_from_image:
image_handler = ImageHandler(image.name)
(_, image_vbmeta_header, image_descriptors, _) = self._parse_image(
image_handler)
# Bump the required libavb version to support all included descriptors.
h.bump_required_libavb_version_minor(
image_vbmeta_header.required_libavb_version_minor)
for desc in image_descriptors:
# The --include_descriptors_from_image option is used in some setups
# with images A and B where both A and B contain a descriptor
# for a partition with the same name. Since it's not meaningful
# to include both descriptors, only include the last seen descriptor.
# See bug 76386656 for details.
if hasattr(desc, 'partition_name'):
key = type(desc).__name__ + '_' + desc.partition_name
descriptors_dict[key] = desc.encode()
else:
encoded_descriptors.extend(desc.encode())
for key in sorted(descriptors_dict):
encoded_descriptors.extend(descriptors_dict[key])
# Load public key metadata blob, if requested.
pkmd_blob = []
if public_key_metadata_path:
with open(public_key_metadata_path) as f:
pkmd_blob = f.read()
key = None
encoded_key = bytearray()
if alg.public_key_num_bytes > 0:
if not key_path:
raise AvbError('Key is required for algorithm {}'.format(
algorithm_name))
encoded_key = encode_rsa_key(key_path)
if len(encoded_key) != alg.public_key_num_bytes:
raise AvbError('Key is wrong size for algorithm {}'.format(
algorithm_name))
# Override release string, if requested.
# pylint: disable=unicode-builtin
if isinstance(release_string, (str, unicode)):
h.release_string = release_string
# Append to release string, if requested. Also insert a space before.
if isinstance(append_to_release_string, (str, unicode)):
h.release_string += ' ' + append_to_release_string
# For the Auxiliary data block, descriptors are stored at offset 0,
# followed by the public key, followed by the public key metadata blob.
h.auxiliary_data_block_size = round_to_multiple(
len(encoded_descriptors) + len(encoded_key) + len(pkmd_blob), 64)
h.descriptors_offset = 0
h.descriptors_size = len(encoded_descriptors)
h.public_key_offset = h.descriptors_size
h.public_key_size = len(encoded_key)
h.public_key_metadata_offset = h.public_key_offset + h.public_key_size
h.public_key_metadata_size = len(pkmd_blob)
# For the Authentication data block, the hash is first and then
# the signature.
h.authentication_data_block_size = round_to_multiple(
alg.hash_num_bytes + alg.signature_num_bytes, 64)
h.algorithm_type = alg.algorithm_type
h.hash_offset = 0
h.hash_size = alg.hash_num_bytes
# Signature offset and size - it's stored right after the hash
# (in Authentication data block).
h.signature_offset = alg.hash_num_bytes
h.signature_size = alg.signature_num_bytes
h.rollback_index = rollback_index
h.flags = flags
# Generate Header data block.
header_data_blob = h.encode()
# Generate Auxiliary data block.
aux_data_blob = bytearray()
aux_data_blob.extend(encoded_descriptors)
aux_data_blob.extend(encoded_key)
aux_data_blob.extend(pkmd_blob)
padding_bytes = h.auxiliary_data_block_size - len(aux_data_blob)
aux_data_blob.extend('\0' * padding_bytes)
# Calculate the hash.
binary_hash = bytearray()
binary_signature = bytearray()
if algorithm_name != 'NONE':
ha = hashlib.new(alg.hash_name)
ha.update(header_data_blob)
ha.update(aux_data_blob)
binary_hash.extend(ha.digest())
# Calculate the signature.
padding_and_hash = str(bytearray(alg.padding)) + binary_hash
binary_signature.extend(raw_sign(signing_helper,
signing_helper_with_files,
algorithm_name,
alg.signature_num_bytes, key_path,
padding_and_hash))
# Generate Authentication data block.
auth_data_blob = bytearray()
auth_data_blob.extend(binary_hash)
auth_data_blob.extend(binary_signature)
padding_bytes = h.authentication_data_block_size - len(auth_data_blob)
auth_data_blob.extend('\0' * padding_bytes)
return header_data_blob + auth_data_blob + aux_data_blob
def extract_public_key(self, key_path, output):
"""Implements the 'extract_public_key' command.
Arguments:
key_path: The path to a RSA private key file.
output: The file to write to.
"""
output.write(encode_rsa_key(key_path))
def append_vbmeta_image(self, image_filename, vbmeta_image_filename,
partition_size):
"""Implementation of the append_vbmeta_image command.
Arguments:
image_filename: File to add the footer to.
vbmeta_image_filename: File to get vbmeta struct from.
partition_size: Size of partition.
Raises:
AvbError: If an argument is incorrect.
"""
image = ImageHandler(image_filename)
if partition_size % image.block_size != 0:
raise AvbError('Partition size of {} is not a multiple of the image '
'block size {}.'.format(partition_size,
image.block_size))
# If there's already a footer, truncate the image to its original
# size. This way 'avbtool append_vbmeta_image' is idempotent.
if image.image_size >= AvbFooter.SIZE:
image.seek(image.image_size - AvbFooter.SIZE)
try:
footer = AvbFooter(image.read(AvbFooter.SIZE))
# Existing footer found. Just truncate.
original_image_size = footer.original_image_size
image.truncate(footer.original_image_size)
except (LookupError, struct.error):
original_image_size = image.image_size
else:
# Image size is too small to possibly contain a footer.
original_image_size = image.image_size
# If anything goes wrong from here-on, restore the image back to
# its original size.
try:
vbmeta_image_handler = ImageHandler(vbmeta_image_filename)
vbmeta_blob = self._load_vbmeta_blob(vbmeta_image_handler)
# If the image isn't sparse, its size might not be a multiple of
# the block size. This will screw up padding later so just grow it.
if image.image_size % image.block_size != 0:
assert not image.is_sparse
padding_needed = image.block_size - (image.image_size%image.block_size)
image.truncate(image.image_size + padding_needed)
# The append_raw() method requires content with size being a
# multiple of |block_size| so add padding as needed. Also record
# where this is written to since we'll need to put that in the
# footer.
vbmeta_offset = image.image_size
padding_needed = (round_to_multiple(len(vbmeta_blob), image.block_size) -
len(vbmeta_blob))
vbmeta_blob_with_padding = vbmeta_blob + '\0'*padding_needed
# Append vbmeta blob and footer
image.append_raw(vbmeta_blob_with_padding)
vbmeta_end_offset = vbmeta_offset + len(vbmeta_blob_with_padding)
# Now insert a DONT_CARE chunk with enough bytes such that the
# final Footer block is at the end of partition_size..
image.append_dont_care(partition_size - vbmeta_end_offset -
1*image.block_size)
# Generate the Footer that tells where the VBMeta footer
# is. Also put enough padding in the front of the footer since
# we'll write out an entire block.
footer = AvbFooter()
footer.original_image_size = original_image_size
footer.vbmeta_offset = vbmeta_offset
footer.vbmeta_size = len(vbmeta_blob)
footer_blob = footer.encode()
footer_blob_with_padding = ('\0'*(image.block_size - AvbFooter.SIZE) +
footer_blob)
image.append_raw(footer_blob_with_padding)
except:
# Truncate back to original size, then re-raise
image.truncate(original_image_size)
raise
def add_hash_footer(self, image_filename, partition_size, partition_name,
hash_algorithm, salt, chain_partitions, algorithm_name,
key_path,
public_key_metadata_path, rollback_index, flags, props,
props_from_file, kernel_cmdlines,
setup_rootfs_from_kernel,
include_descriptors_from_image, calc_max_image_size,
signing_helper, signing_helper_with_files,
release_string, append_to_release_string,
output_vbmeta_image, do_not_append_vbmeta_image,
print_required_libavb_version, use_persistent_digest,
do_not_use_ab):
"""Implementation of the add_hash_footer on unsparse images.
Arguments:
image_filename: File to add the footer to.
partition_size: Size of partition.
partition_name: Name of partition (without A/B suffix).
hash_algorithm: Hash algorithm to use.
salt: Salt to use as a hexadecimal string or None to use /dev/urandom.
chain_partitions: List of partitions to chain.
algorithm_name: Name of algorithm to use.
key_path: Path to key to use or None.
public_key_metadata_path: Path to public key metadata or None.
rollback_index: Rollback index.
flags: Flags value to use in the image.
props: Properties to insert (List of strings of the form 'key:value').
props_from_file: Properties to insert (List of strings 'key:<path>').
kernel_cmdlines: Kernel cmdlines to insert (list of strings).
setup_rootfs_from_kernel: None or file to generate
dm-verity kernel cmdline from.
include_descriptors_from_image: List of file objects for which
to insert descriptors from.
calc_max_image_size: Don't store the footer - instead calculate the
maximum image size leaving enough room for metadata with the
given |partition_size|.
signing_helper: Program which signs a hash and return signature.
signing_helper_with_files: Same as signing_helper but uses files instead.
release_string: None or avbtool release string.
append_to_release_string: None or string to append.
output_vbmeta_image: If not None, also write vbmeta struct to this file.
do_not_append_vbmeta_image: If True, don't append vbmeta struct.
print_required_libavb_version: True to only print required libavb version.
use_persistent_digest: Use a persistent digest on device.
do_not_use_ab: This partition does not use A/B.
Raises:
AvbError: If an argument is incorrect.
"""
required_libavb_version_minor = 0
if use_persistent_digest or do_not_use_ab:
required_libavb_version_minor = 1
# If we're asked to calculate minimum required libavb version, we're done.
if print_required_libavb_version:
print('1.{}'.format(required_libavb_version_minor))
return
# First, calculate the maximum image size such that an image
# this size + metadata (footer + vbmeta struct) fits in
# |partition_size|.
max_metadata_size = self.MAX_VBMETA_SIZE + self.MAX_FOOTER_SIZE
if partition_size < max_metadata_size:
raise AvbError('Parition size of {} is too small. '
'Needs to be at least {}'.format(
partition_size, max_metadata_size))
max_image_size = partition_size - max_metadata_size
# If we're asked to only calculate the maximum image size, we're done.
if calc_max_image_size:
print('{}'.format(max_image_size))
return
image = ImageHandler(image_filename)
if partition_size % image.block_size != 0:
raise AvbError('Partition size of {} is not a multiple of the image '
'block size {}.'.format(partition_size,
image.block_size))
# If there's already a footer, truncate the image to its original
# size. This way 'avbtool add_hash_footer' is idempotent (modulo
# salts).
if image.image_size >= AvbFooter.SIZE:
image.seek(image.image_size - AvbFooter.SIZE)
try:
footer = AvbFooter(image.read(AvbFooter.SIZE))
# Existing footer found. Just truncate.
original_image_size = footer.original_image_size
image.truncate(footer.original_image_size)
except (LookupError, struct.error):
original_image_size = image.image_size
else:
# Image size is too small to possibly contain a footer.
original_image_size = image.image_size
# If anything goes wrong from here-on, restore the image back to
# its original size.
try:
# If image size exceeds the maximum image size, fail.
if image.image_size > max_image_size:
raise AvbError('Image size of {} exceeds maximum image '
'size of {} in order to fit in a partition '
'size of {}.'.format(image.image_size, max_image_size,
partition_size))
digest_size = len(hashlib.new(name=hash_algorithm).digest())
if salt:
salt = binascii.unhexlify(salt)
elif salt is None and not use_persistent_digest:
# If salt is not explicitly specified, choose a hash that's the same
# size as the hash size. Don't populate a random salt if this
# descriptor is being created to use a persistent digest on device.
hash_size = digest_size
salt = open('/dev/urandom').read(hash_size)
else:
salt = ''
hasher = hashlib.new(name=hash_algorithm, string=salt)
# TODO(zeuthen): might want to read this in chunks to avoid
# memory pressure, then again, this is only supposed to be used
# on kernel/initramfs partitions. Possible optimization.
image.seek(0)
hasher.update(image.read(image.image_size))
digest = hasher.digest()
h_desc = AvbHashDescriptor()
h_desc.image_size = image.image_size
h_desc.hash_algorithm = hash_algorithm
h_desc.partition_name = partition_name
h_desc.salt = salt
h_desc.flags = 0
if do_not_use_ab:
h_desc.flags |= 1 # AVB_HASH_DESCRIPTOR_FLAGS_DO_NOT_USE_AB
if not use_persistent_digest:
h_desc.digest = digest
# Generate the VBMeta footer.
ht_desc_to_setup = None
vbmeta_blob = self._generate_vbmeta_blob(
algorithm_name, key_path, public_key_metadata_path, [h_desc],
chain_partitions, rollback_index, flags, props, props_from_file,
kernel_cmdlines, setup_rootfs_from_kernel, ht_desc_to_setup,
include_descriptors_from_image, signing_helper,
signing_helper_with_files, release_string,
append_to_release_string, required_libavb_version_minor)
# Write vbmeta blob, if requested.
if output_vbmeta_image:
output_vbmeta_image.write(vbmeta_blob)
# Append vbmeta blob and footer, unless requested not to.
if not do_not_append_vbmeta_image:
# If the image isn't sparse, its size might not be a multiple of
# the block size. This will screw up padding later so just grow it.
if image.image_size % image.block_size != 0:
assert not image.is_sparse
padding_needed = image.block_size - (
image.image_size % image.block_size)
image.truncate(image.image_size + padding_needed)
# The append_raw() method requires content with size being a
# multiple of |block_size| so add padding as needed. Also record
# where this is written to since we'll need to put that in the
# footer.
vbmeta_offset = image.image_size
padding_needed = (
round_to_multiple(len(vbmeta_blob), image.block_size) -
len(vbmeta_blob))
vbmeta_blob_with_padding = vbmeta_blob + '\0' * padding_needed
image.append_raw(vbmeta_blob_with_padding)
vbmeta_end_offset = vbmeta_offset + len(vbmeta_blob_with_padding)
# Now insert a DONT_CARE chunk with enough bytes such that the
# final Footer block is at the end of partition_size..
image.append_dont_care(partition_size - vbmeta_end_offset -
1*image.block_size)
# Generate the Footer that tells where the VBMeta footer
# is. Also put enough padding in the front of the footer since
# we'll write out an entire block.
footer = AvbFooter()
footer.original_image_size = original_image_size
footer.vbmeta_offset = vbmeta_offset
footer.vbmeta_size = len(vbmeta_blob)
footer_blob = footer.encode()
footer_blob_with_padding = ('\0'*(image.block_size - AvbFooter.SIZE) +
footer_blob)
image.append_raw(footer_blob_with_padding)
except:
# Truncate back to original size, then re-raise
image.truncate(original_image_size)
raise
def add_hashtree_footer(self, image_filename, partition_size, partition_name,
generate_fec, fec_num_roots, hash_algorithm,
block_size, salt, chain_partitions, algorithm_name,
key_path,
public_key_metadata_path, rollback_index, flags,
props, props_from_file, kernel_cmdlines,
setup_rootfs_from_kernel,
setup_as_rootfs_from_kernel,
include_descriptors_from_image,
calc_max_image_size, signing_helper,
signing_helper_with_files,
release_string, append_to_release_string,
output_vbmeta_image, do_not_append_vbmeta_image,
print_required_libavb_version,
use_persistent_root_digest, do_not_use_ab,
no_hashtree):
"""Implements the 'add_hashtree_footer' command.
See https://gitlab.com/cryptsetup/cryptsetup/wikis/DMVerity for
more information about dm-verity and these hashes.
Arguments:
image_filename: File to add the footer to.
partition_size: Size of partition or 0 to put it right at the end.
partition_name: Name of partition (without A/B suffix).
generate_fec: If True, generate FEC codes.
fec_num_roots: Number of roots for FEC.
hash_algorithm: Hash algorithm to use.
block_size: Block size to use.
salt: Salt to use as a hexadecimal string or None to use /dev/urandom.
chain_partitions: List of partitions to chain.
algorithm_name: Name of algorithm to use.
key_path: Path to key to use or None.
public_key_metadata_path: Path to public key metadata or None.
rollback_index: Rollback index.
flags: Flags value to use in the image.
props: Properties to insert (List of strings of the form 'key:value').
props_from_file: Properties to insert (List of strings 'key:<path>').
kernel_cmdlines: Kernel cmdlines to insert (list of strings).
setup_rootfs_from_kernel: None or file to generate
dm-verity kernel cmdline from.
setup_as_rootfs_from_kernel: If True, generate dm-verity kernel
cmdline to set up rootfs.
include_descriptors_from_image: List of file objects for which
to insert descriptors from.
calc_max_image_size: Don't store the hashtree or footer - instead
calculate the maximum image size leaving enough room for hashtree
and metadata with the given |partition_size|.
signing_helper: Program which signs a hash and return signature.
signing_helper_with_files: Same as signing_helper but uses files instead.
release_string: None or avbtool release string.
append_to_release_string: None or string to append.
output_vbmeta_image: If not None, also write vbmeta struct to this file.
do_not_append_vbmeta_image: If True, don't append vbmeta struct.
print_required_libavb_version: True to only print required libavb version.
use_persistent_root_digest: Use a persistent root digest on device.
do_not_use_ab: The partition does not use A/B.
no_hashtree: Do not append hashtree. Set size in descriptor as zero.
Raises:
AvbError: If an argument is incorrect.
"""
required_libavb_version_minor = 0
if use_persistent_root_digest or do_not_use_ab:
required_libavb_version_minor = 1
# If we're asked to calculate minimum required libavb version, we're done.
if print_required_libavb_version:
print('1.{}'.format(required_libavb_version_minor))
return
digest_size = len(hashlib.new(name=hash_algorithm).digest())
digest_padding = round_to_pow2(digest_size) - digest_size
# If |partition_size| is given (e.g. not 0), calculate the maximum image
# size such that an image this size + the hashtree + metadata (footer +
# vbmeta struct) fits in |partition_size|. We use very conservative figures
# for metadata.
if partition_size > 0:
max_tree_size = 0
max_fec_size = 0
if not no_hashtree:
(_, max_tree_size) = calc_hash_level_offsets(
partition_size, block_size, digest_size + digest_padding)
if generate_fec:
max_fec_size = calc_fec_data_size(partition_size, fec_num_roots)
max_metadata_size = (max_fec_size + max_tree_size +
self.MAX_VBMETA_SIZE +
self.MAX_FOOTER_SIZE)
max_image_size = partition_size - max_metadata_size
else:
max_image_size = 0
# If we're asked to only calculate the maximum image size, we're done.
if calc_max_image_size:
print('{}'.format(max_image_size))
return
image = ImageHandler(image_filename)
if partition_size > 0:
if partition_size % image.block_size != 0:
raise AvbError('Partition size of {} is not a multiple of the image '
'block size {}.'.format(partition_size,
image.block_size))
elif image.image_size % image.block_size != 0:
raise AvbError('File size of {} is not a multiple of the image '
'block size {}.'.format(image.image_size,
image.block_size))
# If there's already a footer, truncate the image to its original
# size. This way 'avbtool add_hashtree_footer' is idempotent
# (modulo salts).
if image.image_size >= AvbFooter.SIZE:
image.seek(image.image_size - AvbFooter.SIZE)
try:
footer = AvbFooter(image.read(AvbFooter.SIZE))
# Existing footer found. Just truncate.
original_image_size = footer.original_image_size
image.truncate(footer.original_image_size)
except (LookupError, struct.error):
original_image_size = image.image_size
else:
# Image size is too small to possibly contain a footer.
original_image_size = image.image_size
# If anything goes wrong from here-on, restore the image back to
# its original size.
try:
# Ensure image is multiple of block_size.
rounded_image_size = round_to_multiple(image.image_size, block_size)
if rounded_image_size > image.image_size:
image.append_raw('\0' * (rounded_image_size - image.image_size))
# If image size exceeds the maximum image size, fail.
if partition_size > 0:
if image.image_size > max_image_size:
raise AvbError('Image size of {} exceeds maximum image '
'size of {} in order to fit in a partition '
'size of {}.'.format(image.image_size, max_image_size,
partition_size))
if salt:
salt = binascii.unhexlify(salt)
elif salt is None and not use_persistent_root_digest:
# If salt is not explicitly specified, choose a hash that's the same
# size as the hash size. Don't populate a random salt if this
# descriptor is being created to use a persistent digest on device.
hash_size = digest_size
salt = open('/dev/urandom').read(hash_size)
else:
salt = ''
# Hashes are stored upside down so we need to calculate hash
# offsets in advance.
(hash_level_offsets, tree_size) = calc_hash_level_offsets(
image.image_size, block_size, digest_size + digest_padding)
# If the image isn't sparse, its size might not be a multiple of
# the block size. This will screw up padding later so just grow it.
if image.image_size % image.block_size != 0:
assert not image.is_sparse
padding_needed = image.block_size - (image.image_size%image.block_size)
image.truncate(image.image_size + padding_needed)
# Generate the tree and add padding as needed.
tree_offset = image.image_size
root_digest, hash_tree = generate_hash_tree(image, image.image_size,
block_size,
hash_algorithm, salt,
digest_padding,
hash_level_offsets,
tree_size)
# Generate HashtreeDescriptor with details about the tree we
# just generated.
if no_hashtree:
tree_size = 0
hash_tree = bytearray()
ht_desc = AvbHashtreeDescriptor()
ht_desc.dm_verity_version = 1
ht_desc.image_size = image.image_size
ht_desc.tree_offset = tree_offset
ht_desc.tree_size = tree_size
ht_desc.data_block_size = block_size
ht_desc.hash_block_size = block_size
ht_desc.hash_algorithm = hash_algorithm
ht_desc.partition_name = partition_name
ht_desc.salt = salt
if do_not_use_ab:
ht_desc.flags |= 1 # AVB_HASHTREE_DESCRIPTOR_FLAGS_DO_NOT_USE_AB
if not use_persistent_root_digest:
ht_desc.root_digest = root_digest
# Write the hash tree
padding_needed = (round_to_multiple(len(hash_tree), image.block_size) -
len(hash_tree))
hash_tree_with_padding = hash_tree + '\0'*padding_needed
image.append_raw(hash_tree_with_padding)
len_hashtree_and_fec = len(hash_tree_with_padding)
# Generate FEC codes, if requested.
if generate_fec:
if no_hashtree:
fec_data = bytearray()
else:
fec_data = generate_fec_data(image_filename, fec_num_roots)
padding_needed = (round_to_multiple(len(fec_data), image.block_size) -
len(fec_data))
fec_data_with_padding = fec_data + '\0'*padding_needed
fec_offset = image.image_size
image.append_raw(fec_data_with_padding)
len_hashtree_and_fec += len(fec_data_with_padding)
# Update the hashtree descriptor.
ht_desc.fec_num_roots = fec_num_roots
ht_desc.fec_offset = fec_offset
ht_desc.fec_size = len(fec_data)
ht_desc_to_setup = None
if setup_as_rootfs_from_kernel:
ht_desc_to_setup = ht_desc
# Generate the VBMeta footer and add padding as needed.
vbmeta_offset = tree_offset + len_hashtree_and_fec
vbmeta_blob = self._generate_vbmeta_blob(
algorithm_name, key_path, public_key_metadata_path, [ht_desc],
chain_partitions, rollback_index, flags, props, props_from_file,
kernel_cmdlines, setup_rootfs_from_kernel, ht_desc_to_setup,
include_descriptors_from_image, signing_helper,
signing_helper_with_files, release_string,
append_to_release_string, required_libavb_version_minor)
padding_needed = (round_to_multiple(len(vbmeta_blob), image.block_size) -
len(vbmeta_blob))
vbmeta_blob_with_padding = vbmeta_blob + '\0'*padding_needed
# Write vbmeta blob, if requested.
if output_vbmeta_image:
output_vbmeta_image.write(vbmeta_blob)
# Append vbmeta blob and footer, unless requested not to.
if not do_not_append_vbmeta_image:
image.append_raw(vbmeta_blob_with_padding)
# Now insert a DONT_CARE chunk with enough bytes such that the
# final Footer block is at the end of partition_size..
if partition_size > 0:
image.append_dont_care(partition_size - image.image_size -
1*image.block_size)
# Generate the Footer that tells where the VBMeta footer
# is. Also put enough padding in the front of the footer since
# we'll write out an entire block.
footer = AvbFooter()
footer.original_image_size = original_image_size
footer.vbmeta_offset = vbmeta_offset
footer.vbmeta_size = len(vbmeta_blob)
footer_blob = footer.encode()
footer_blob_with_padding = ('\0'*(image.block_size - AvbFooter.SIZE) +
footer_blob)
image.append_raw(footer_blob_with_padding)
except:
# Truncate back to original size, then re-raise.
image.truncate(original_image_size)
raise
def make_atx_certificate(self, output, authority_key_path, subject_key_path,
subject_key_version, subject,
is_intermediate_authority, usage, signing_helper,
signing_helper_with_files):
"""Implements the 'make_atx_certificate' command.
Android Things certificates are required for Android Things public key
metadata. They chain the vbmeta signing key for a particular product back to
a fused, permanent root key. These certificates are fixed-length and fixed-
format with the explicit goal of not parsing ASN.1 in bootloader code.
Arguments:
output: Certificate will be written to this file on success.
authority_key_path: A PEM file path with the authority private key.
If None, then a certificate will be created without a
signature. The signature can be created out-of-band
and appended.
subject_key_path: Path to a PEM or DER subject public key.
subject_key_version: A 64-bit version value. If this is None, the number
of seconds since the epoch is used.
subject: A subject identifier. For Product Signing Key certificates this
should be the same Product ID found in the permanent attributes.
is_intermediate_authority: True if the certificate is for an intermediate
authority.
usage: If not empty, overrides the cert usage with a hash of this value.
signing_helper: Program which signs a hash and returns the signature.
signing_helper_with_files: Same as signing_helper but uses files instead.
"""
signed_data = bytearray()
signed_data.extend(struct.pack('<I', 1)) # Format Version
signed_data.extend(encode_rsa_key(subject_key_path))
hasher = hashlib.sha256()
hasher.update(subject)
signed_data.extend(hasher.digest())
if not usage:
usage = 'com.google.android.things.vboot'
if is_intermediate_authority:
usage += '.ca'
hasher = hashlib.sha256()
hasher.update(usage)
signed_data.extend(hasher.digest())
if subject_key_version is None:
subject_key_version = int(time.time())
signed_data.extend(struct.pack('<Q', subject_key_version))
signature = bytearray()
if authority_key_path:
padding_and_hash = bytearray()
algorithm_name = 'SHA512_RSA4096'
alg = ALGORITHMS[algorithm_name]
hasher = hashlib.sha512() # pylint: disable=redefined-variable-type
padding_and_hash.extend(alg.padding)
hasher.update(signed_data)
padding_and_hash.extend(hasher.digest())
signature.extend(raw_sign(signing_helper, signing_helper_with_files,
algorithm_name,
alg.signature_num_bytes, authority_key_path,
padding_and_hash))
output.write(signed_data)
output.write(signature)
def make_atx_permanent_attributes(self, output, root_authority_key_path,
product_id):
"""Implements the 'make_atx_permanent_attributes' command.
Android Things permanent attributes are designed to be permanent for a
particular product and a hash of these attributes should be fused into
hardware to enforce this.
Arguments:
output: Attributes will be written to this file on success.
root_authority_key_path: Path to a PEM or DER public key for
the root authority.
product_id: A 16-byte Product ID.
Raises:
AvbError: If an argument is incorrect.
"""
EXPECTED_PRODUCT_ID_SIZE = 16 # pylint: disable=invalid-name
if len(product_id) != EXPECTED_PRODUCT_ID_SIZE:
raise AvbError('Invalid Product ID length.')
output.write(struct.pack('<I', 1)) # Format Version
output.write(encode_rsa_key(root_authority_key_path))
output.write(product_id)
def make_atx_metadata(self, output, intermediate_key_certificate,
product_key_certificate):
"""Implements the 'make_atx_metadata' command.
Android Things metadata are included in vbmeta images to facilitate
verification. The output of this command can be used as the
public_key_metadata argument to other commands.
Arguments:
output: Metadata will be written to this file on success.
intermediate_key_certificate: A certificate file as output by
make_atx_certificate with
is_intermediate_authority set to true.
product_key_certificate: A certificate file as output by
make_atx_certificate with
is_intermediate_authority set to false.
Raises:
AvbError: If an argument is incorrect.
"""
EXPECTED_CERTIFICATE_SIZE = 1620 # pylint: disable=invalid-name
if len(intermediate_key_certificate) != EXPECTED_CERTIFICATE_SIZE:
raise AvbError('Invalid intermediate key certificate length.')
if len(product_key_certificate) != EXPECTED_CERTIFICATE_SIZE:
raise AvbError('Invalid product key certificate length.')
output.write(struct.pack('<I', 1)) # Format Version
output.write(intermediate_key_certificate)
output.write(product_key_certificate)
def make_atx_unlock_credential(self, output, intermediate_key_certificate,
unlock_key_certificate, challenge_path,
unlock_key_path, signing_helper,
signing_helper_with_files):
"""Implements the 'make_atx_unlock_credential' command.
Android Things unlock credentials can be used to authorize the unlock of AVB
on a device. These credentials are presented to an Android Things bootloader
via the fastboot interface in response to a 16-byte challenge. This method
creates all fields of the credential except the challenge signature field
(which is the last field) and can optionally create the challenge signature
field as well if a challenge and the unlock_key_path is provided.
Arguments:
output: The credential will be written to this file on success.
intermediate_key_certificate: A certificate file as output by
make_atx_certificate with
is_intermediate_authority set to true.
unlock_key_certificate: A certificate file as output by
make_atx_certificate with
is_intermediate_authority set to false and the
usage set to
'com.google.android.things.vboot.unlock'.
challenge_path: [optional] A path to the challenge to sign.
unlock_key_path: [optional] A PEM file path with the unlock private key.
signing_helper: Program which signs a hash and returns the signature.
signing_helper_with_files: Same as signing_helper but uses files instead.
Raises:
AvbError: If an argument is incorrect.
"""
EXPECTED_CERTIFICATE_SIZE = 1620 # pylint: disable=invalid-name
EXPECTED_CHALLENGE_SIZE = 16 # pylint: disable=invalid-name
if len(intermediate_key_certificate) != EXPECTED_CERTIFICATE_SIZE:
raise AvbError('Invalid intermediate key certificate length.')
if len(unlock_key_certificate) != EXPECTED_CERTIFICATE_SIZE:
raise AvbError('Invalid product key certificate length.')
challenge = bytearray()
if challenge_path:
with open(challenge_path, 'r') as f:
challenge = f.read()
if len(challenge) != EXPECTED_CHALLENGE_SIZE:
raise AvbError('Invalid unlock challenge length.')
output.write(struct.pack('<I', 1)) # Format Version
output.write(intermediate_key_certificate)
output.write(unlock_key_certificate)
if challenge_path and unlock_key_path:
signature = bytearray()
padding_and_hash = bytearray()
algorithm_name = 'SHA512_RSA4096'
alg = ALGORITHMS[algorithm_name]
hasher = hashlib.sha512()
padding_and_hash.extend(alg.padding)
hasher.update(challenge)
padding_and_hash.extend(hasher.digest())
signature.extend(raw_sign(signing_helper, signing_helper_with_files,
algorithm_name,
alg.signature_num_bytes, unlock_key_path,
padding_and_hash))
output.write(signature)
def calc_hash_level_offsets(image_size, block_size, digest_size):
"""Calculate the offsets of all the hash-levels in a Merkle-tree.
Arguments:
image_size: The size of the image to calculate a Merkle-tree for.
block_size: The block size, e.g. 4096.
digest_size: The size of each hash, e.g. 32 for SHA-256.
Returns:
A tuple where the first argument is an array of offsets and the
second is size of the tree, in bytes.
"""
level_offsets = []
level_sizes = []
tree_size = 0
num_levels = 0
size = image_size
while size > block_size:
num_blocks = (size + block_size - 1) // block_size
level_size = round_to_multiple(num_blocks * digest_size, block_size)
level_sizes.append(level_size)
tree_size += level_size
num_levels += 1
size = level_size
for n in range(0, num_levels):
offset = 0
for m in range(n + 1, num_levels):
offset += level_sizes[m]
level_offsets.append(offset)
return level_offsets, tree_size
# See system/extras/libfec/include/fec/io.h for these definitions.
FEC_FOOTER_FORMAT = '<LLLLLQ32s'
FEC_MAGIC = 0xfecfecfe
def calc_fec_data_size(image_size, num_roots):
"""Calculates how much space FEC data will take.
Arguments:
image_size: The size of the image.
num_roots: Number of roots.
Returns:
The number of bytes needed for FEC for an image of the given size
and with the requested number of FEC roots.
Raises:
ValueError: If output from the 'fec' tool is invalid.
"""
p = subprocess.Popen(
['fec', '--print-fec-size', str(image_size), '--roots', str(num_roots)],
stdout=subprocess.PIPE,
stderr=subprocess.PIPE)
(pout, perr) = p.communicate()
retcode = p.wait()
if retcode != 0:
raise ValueError('Error invoking fec: {}'.format(perr))
return int(pout)
def generate_fec_data(image_filename, num_roots):
"""Generate FEC codes for an image.
Arguments:
image_filename: The filename of the image.
num_roots: Number of roots.
Returns:
The FEC data blob.
Raises:
ValueError: If output from the 'fec' tool is invalid.
"""
fec_tmpfile = tempfile.NamedTemporaryFile()
subprocess.check_call(
['fec', '--encode', '--roots', str(num_roots), image_filename,
fec_tmpfile.name],
stderr=open(os.devnull))
fec_data = fec_tmpfile.read()
footer_size = struct.calcsize(FEC_FOOTER_FORMAT)
footer_data = fec_data[-footer_size:]
(magic, _, _, num_roots, fec_size, _, _) = struct.unpack(FEC_FOOTER_FORMAT,
footer_data)
if magic != FEC_MAGIC:
raise ValueError('Unexpected magic in FEC footer')
return fec_data[0:fec_size]
def generate_hash_tree(image, image_size, block_size, hash_alg_name, salt,
digest_padding, hash_level_offsets, tree_size):
"""Generates a Merkle-tree for a file.
Arguments:
image: The image, as a file.
image_size: The size of the image.
block_size: The block size, e.g. 4096.
hash_alg_name: The hash algorithm, e.g. 'sha256' or 'sha1'.
salt: The salt to use.
digest_padding: The padding for each digest.
hash_level_offsets: The offsets from calc_hash_level_offsets().
tree_size: The size of the tree, in number of bytes.
Returns:
A tuple where the first element is the top-level hash and the
second element is the hash-tree.
"""
hash_ret = bytearray(tree_size)
hash_src_offset = 0
hash_src_size = image_size
level_num = 0
while hash_src_size > block_size:
level_output = ''
remaining = hash_src_size
while remaining > 0:
hasher = hashlib.new(name=hash_alg_name, string=salt)
# Only read from the file for the first level - for subsequent
# levels, access the array we're building.
if level_num == 0:
image.seek(hash_src_offset + hash_src_size - remaining)
data = image.read(min(remaining, block_size))
else:
offset = hash_level_offsets[level_num - 1] + hash_src_size - remaining
data = hash_ret[offset:offset + block_size]
hasher.update(data)
remaining -= len(data)
if len(data) < block_size:
hasher.update('\0' * (block_size - len(data)))
level_output += hasher.digest()
if digest_padding > 0:
level_output += '\0' * digest_padding
padding_needed = (round_to_multiple(
len(level_output), block_size) - len(level_output))
level_output += '\0' * padding_needed
# Copy level-output into resulting tree.
offset = hash_level_offsets[level_num]
hash_ret[offset:offset + len(level_output)] = level_output
# Continue on to the next level.
hash_src_size = len(level_output)
level_num += 1
hasher = hashlib.new(name=hash_alg_name, string=salt)
hasher.update(level_output)
return hasher.digest(), hash_ret
class AvbTool(object):
"""Object for avbtool command-line tool."""
def __init__(self):
"""Initializer method."""
self.avb = Avb()
def _add_common_args(self, sub_parser):
"""Adds arguments used by several sub-commands.
Arguments:
sub_parser: The parser to add arguments to.
"""
sub_parser.add_argument('--algorithm',
help='Algorithm to use (default: NONE)',
metavar='ALGORITHM',
default='NONE')
sub_parser.add_argument('--key',
help='Path to RSA private key file',
metavar='KEY',
required=False)
sub_parser.add_argument('--signing_helper',
help='Path to helper used for signing',
metavar='APP',
default=None,
required=False)
sub_parser.add_argument('--signing_helper_with_files',
help='Path to helper used for signing using files',
metavar='APP',
default=None,
required=False)
sub_parser.add_argument('--public_key_metadata',
help='Path to public key metadata file',
metavar='KEY_METADATA',
required=False)
sub_parser.add_argument('--rollback_index',
help='Rollback Index',
type=parse_number,
default=0)
# This is used internally for unit tests. Do not include in --help output.
sub_parser.add_argument('--internal_release_string',
help=argparse.SUPPRESS)
sub_parser.add_argument('--append_to_release_string',
help='Text to append to release string',
metavar='STR')
sub_parser.add_argument('--prop',
help='Add property',
metavar='KEY:VALUE',
action='append')
sub_parser.add_argument('--prop_from_file',
help='Add property from file',
metavar='KEY:PATH',
action='append')
sub_parser.add_argument('--kernel_cmdline',
help='Add kernel cmdline',
metavar='CMDLINE',
action='append')
# TODO(zeuthen): the --setup_rootfs_from_kernel option used to be called
# --generate_dm_verity_cmdline_from_hashtree. Remove support for the latter
# at some future point.
sub_parser.add_argument('--setup_rootfs_from_kernel',
'--generate_dm_verity_cmdline_from_hashtree',
metavar='IMAGE',
help='Adds kernel cmdline to set up IMAGE',
type=argparse.FileType('rb'))
sub_parser.add_argument('--include_descriptors_from_image',
help='Include descriptors from image',
metavar='IMAGE',
action='append',
type=argparse.FileType('rb'))
sub_parser.add_argument('--print_required_libavb_version',
help=('Don\'t store the footer - '
'instead calculate the required libavb '
'version for the given options.'),
action='store_true')
# These are only allowed from top-level vbmeta and boot-in-lieu-of-vbmeta.
sub_parser.add_argument('--chain_partition',
help='Allow signed integrity-data for partition',
metavar='PART_NAME:ROLLBACK_SLOT:KEY_PATH',
action='append')
sub_parser.add_argument('--flags',
help='VBMeta flags',
type=parse_number,
default=0)
sub_parser.add_argument('--set_hashtree_disabled_flag',
help='Set the HASHTREE_DISABLED flag',
action='store_true')
def _add_common_footer_args(self, sub_parser):
"""Adds arguments used by add_*_footer sub-commands.
Arguments:
sub_parser: The parser to add arguments to.
"""
sub_parser.add_argument('--use_persistent_digest',
help='Use a persistent digest on device instead of '
'storing the digest in the descriptor. This '
'cannot be used with A/B so must be combined '
'with --do_not_use_ab when an A/B suffix is '
'expected at runtime.',
action='store_true')
sub_parser.add_argument('--do_not_use_ab',
help='The partition does not use A/B even when an '
'A/B suffix is present. This must not be used '
'for vbmeta or chained partitions.',
action='store_true')
def _fixup_common_args(self, args):
"""Common fixups needed by subcommands.
Arguments:
args: Arguments to modify.
Returns:
The modified arguments.
"""
if args.set_hashtree_disabled_flag:
args.flags |= AVB_VBMETA_IMAGE_FLAGS_HASHTREE_DISABLED
return args
def run(self, argv):
"""Command-line processor.
Arguments:
argv: Pass sys.argv from main.
"""
parser = argparse.ArgumentParser()
subparsers = parser.add_subparsers(title='subcommands')
sub_parser = subparsers.add_parser('version',
help='Prints version of avbtool.')
sub_parser.set_defaults(func=self.version)
sub_parser = subparsers.add_parser('extract_public_key',
help='Extract public key.')
sub_parser.add_argument('--key',
help='Path to RSA private key file',
required=True)
sub_parser.add_argument('--output',
help='Output file name',
type=argparse.FileType('wb'),
required=True)
sub_parser.set_defaults(func=self.extract_public_key)
sub_parser = subparsers.add_parser('make_vbmeta_image',
help='Makes a vbmeta image.')
sub_parser.add_argument('--output',
help='Output file name',
type=argparse.FileType('wb'))
sub_parser.add_argument('--padding_size',
metavar='NUMBER',
help='If non-zero, pads output with NUL bytes so '
'its size is a multiple of NUMBER '
'(default: 0)',
type=parse_number,
default=0)
self._add_common_args(sub_parser)
sub_parser.set_defaults(func=self.make_vbmeta_image)
sub_parser = subparsers.add_parser('make_icp_from_vbmeta',
help='Makes an ICP enhanced vbmeta image'
' from an existing vbmeta image.')
sub_parser.add_argument('--output',
help='Output file name.',
type=argparse.FileType('wb'),
default=sys.stdout)
sub_parser.add_argument('--vbmeta_image_path',
help='Path to a generate vbmeta image file.')
sub_parser.add_argument('--version_incremental', help='Current build ID.')
sub_parser.add_argument('--manufacturer_key',
help='Path to the PEM file containing the '
'manufacturer key for use with the log.')
sub_parser.add_argument('--transparency_log_servers',
help='List of transparency log servers in '
'host:port format. This must not be None and must '
'be the same size as transparency_log_pub_keys. '
'Also, transparency_log_servers[n] must correspond '
'to transparency_log_pub_keys[n] for all values n.',
nargs='*')
sub_parser.add_argument('--transparency_log_pub_keys',
help='Paths to PEM files containing transparency '
'log server key(s). This must not be None and must '
'be the same size as transparency_log_servers. '
'Also, transparency_log_pub_keys[n] must '
'correspond to transparency_log_servers[n] for all '
'values n.', nargs='*')
sub_parser.add_argument('--padding_size',
metavar='NUMBER',
help='If non-zero, pads output with NUL bytes so '
'its size is a multiple of NUMBER '
'(default: 0)',
type=parse_number,
default=0)
self._add_common_args(sub_parser)
sub_parser.set_defaults(func=self.make_icp_from_vbmeta)
sub_parser = subparsers.add_parser('add_hash_footer',
help='Add hashes and footer to image.')
sub_parser.add_argument('--image',
help='Image to add hashes to',
type=argparse.FileType('rab+'))
sub_parser.add_argument('--partition_size',
help='Partition size',
type=parse_number)
sub_parser.add_argument('--partition_name',
help='Partition name',
default=None)
sub_parser.add_argument('--hash_algorithm',
help='Hash algorithm to use (default: sha256)',
default='sha256')
sub_parser.add_argument('--salt',
help='Salt in hex (default: /dev/urandom)')
sub_parser.add_argument('--calc_max_image_size',
help=('Don\'t store the footer - '
'instead calculate the maximum image size '
'leaving enough room for metadata with '
'the given partition size.'),
action='store_true')
sub_parser.add_argument('--output_vbmeta_image',
help='Also write vbmeta struct to file',
type=argparse.FileType('wb'))
sub_parser.add_argument('--do_not_append_vbmeta_image',
help=('Do not append vbmeta struct or footer '
'to the image'),
action='store_true')
self._add_common_args(sub_parser)
self._add_common_footer_args(sub_parser)
sub_parser.set_defaults(func=self.add_hash_footer)
sub_parser = subparsers.add_parser('append_vbmeta_image',
help='Append vbmeta image to image.')
sub_parser.add_argument('--image',
help='Image to append vbmeta blob to',
type=argparse.FileType('rab+'))
sub_parser.add_argument('--partition_size',
help='Partition size',
type=parse_number,
required=True)
sub_parser.add_argument('--vbmeta_image',
help='Image with vbmeta blob to append',
type=argparse.FileType('rb'))
sub_parser.set_defaults(func=self.append_vbmeta_image)
sub_parser = subparsers.add_parser(
'add_hashtree_footer',
help='Add hashtree and footer to image.')
sub_parser.add_argument('--image',
help='Image to add hashtree to',
type=argparse.FileType('rab+'))
sub_parser.add_argument('--partition_size',
help='Partition size',
default=0,
type=parse_number)
sub_parser.add_argument('--partition_name',
help='Partition name',
default='')
sub_parser.add_argument('--hash_algorithm',
help='Hash algorithm to use (default: sha1)',
default='sha1')
sub_parser.add_argument('--salt',
help='Salt in hex (default: /dev/urandom)')
sub_parser.add_argument('--block_size',
help='Block size (default: 4096)',
type=parse_number,
default=4096)
# TODO(zeuthen): The --generate_fec option was removed when we
# moved to generating FEC by default. To avoid breaking existing
# users needing to transition we simply just print a warning below
# in add_hashtree_footer(). Remove this option and the warning at
# some point in the future.
sub_parser.add_argument('--generate_fec',
help=argparse.SUPPRESS,
action='store_true')
sub_parser.add_argument(
'--do_not_generate_fec',
help='Do not generate forward-error-correction codes',
action='store_true')
sub_parser.add_argument('--fec_num_roots',
help='Number of roots for FEC (default: 2)',
type=parse_number,
default=2)
sub_parser.add_argument('--calc_max_image_size',
help=('Don\'t store the hashtree or footer - '
'instead calculate the maximum image size '
'leaving enough room for hashtree '
'and metadata with the given partition '
'size.'),
action='store_true')
sub_parser.add_argument('--output_vbmeta_image',
help='Also write vbmeta struct to file',
type=argparse.FileType('wb'))
sub_parser.add_argument('--do_not_append_vbmeta_image',
help=('Do not append vbmeta struct or footer '
'to the image'),
action='store_true')
# This is different from --setup_rootfs_from_kernel insofar that
# it doesn't take an IMAGE, the generated cmdline will be for the
# hashtree we're adding.
sub_parser.add_argument('--setup_as_rootfs_from_kernel',
action='store_true',
help='Adds kernel cmdline for setting up rootfs')
sub_parser.add_argument('--no_hashtree',
action='store_true',
help='Do not append hashtree')
self._add_common_args(sub_parser)
self._add_common_footer_args(sub_parser)
sub_parser.set_defaults(func=self.add_hashtree_footer)
sub_parser = subparsers.add_parser('erase_footer',
help='Erase footer from an image.')
sub_parser.add_argument('--image',
help='Image with a footer',
type=argparse.FileType('rwb+'),
required=True)
sub_parser.add_argument('--keep_hashtree',
help='Keep the hashtree and FEC in the image',
action='store_true')
sub_parser.set_defaults(func=self.erase_footer)
sub_parser = subparsers.add_parser('zero_hashtree',
help='Zero out hashtree and FEC data.')
sub_parser.add_argument('--image',
help='Image with a footer',
type=argparse.FileType('rwb+'),
required=True)
sub_parser.set_defaults(func=self.zero_hashtree)
sub_parser = subparsers.add_parser(
'extract_vbmeta_image',
help='Extracts vbmeta from an image with a footer.')
sub_parser.add_argument('--image',
help='Image with footer',
type=argparse.FileType('rb'),
required=True)
sub_parser.add_argument('--output',
help='Output file name',
type=argparse.FileType('wb'))
sub_parser.add_argument('--padding_size',
metavar='NUMBER',
help='If non-zero, pads output with NUL bytes so '
'its size is a multiple of NUMBER '
'(default: 0)',
type=parse_number,
default=0)
sub_parser.set_defaults(func=self.extract_vbmeta_image)
sub_parser = subparsers.add_parser('resize_image',
help='Resize image with a footer.')
sub_parser.add_argument('--image',
help='Image with a footer',
type=argparse.FileType('rwb+'),
required=True)
sub_parser.add_argument('--partition_size',
help='New partition size',
type=parse_number)
sub_parser.set_defaults(func=self.resize_image)
sub_parser = subparsers.add_parser(
'info_image',
help='Show information about vbmeta or footer.')
sub_parser.add_argument('--image',
help='Image to show information about',
type=argparse.FileType('rb'),
required=True)
sub_parser.add_argument('--output',
help='Write info to file',
type=argparse.FileType('wt'),
default=sys.stdout)
sub_parser.set_defaults(func=self.info_image)
sub_parser = subparsers.add_parser(
'info_image_icp',
help='Show information about AFTL ICPs in vbmeta or footer.')
sub_parser.add_argument('--image',
help='Image to show information about',
type=argparse.FileType('rb'),
required=True)
sub_parser.add_argument('--output',
help='Write info to file',
type=argparse.FileType('wt'),
default=sys.stdout)
sub_parser.set_defaults(func=self.info_image_icp)
sub_parser = subparsers.add_parser(
'verify_image',
help='Verify an image.')
sub_parser.add_argument('--image',
help='Image to verify',
type=argparse.FileType('rb'),
required=True)
sub_parser.add_argument('--key',
help='Check embedded public key matches KEY',
metavar='KEY',
required=False)
sub_parser.add_argument('--expected_chain_partition',
help='Expected chain partition',
metavar='PART_NAME:ROLLBACK_SLOT:KEY_PATH',
action='append')
sub_parser.add_argument(
'--follow_chain_partitions',
help=('Follows chain partitions even when not '
'specified with the --expected_chain_partition option'),
action='store_true')
sub_parser.add_argument(
'--accept_zeroed_hashtree',
help=('Accept images where the hashtree or FEC data is zeroed out'),
action='store_true')
sub_parser.set_defaults(func=self.verify_image)
sub_parser = subparsers.add_parser(
'calculate_vbmeta_digest',
help='Calculate vbmeta digest.')
sub_parser.add_argument('--image',
help='Image to calculate digest for',
type=argparse.FileType('rb'),
required=True)
sub_parser.add_argument('--hash_algorithm',
help='Hash algorithm to use (default: sha256)',
default='sha256')
sub_parser.add_argument('--output',
help='Write hex digest to file (default: stdout)',
type=argparse.FileType('wt'),
default=sys.stdout)
sub_parser.set_defaults(func=self.calculate_vbmeta_digest)
sub_parser = subparsers.add_parser(
'calculate_kernel_cmdline',
help='Calculate kernel cmdline.')
sub_parser.add_argument('--image',
help='Image to calculate kernel cmdline for',
type=argparse.FileType('rb'),
required=True)
sub_parser.add_argument('--hashtree_disabled',
help='Return the cmdline for hashtree disabled',
action='store_true')
sub_parser.add_argument('--output',
help='Write cmdline to file (default: stdout)',
type=argparse.FileType('wt'),
default=sys.stdout)
sub_parser.set_defaults(func=self.calculate_kernel_cmdline)
sub_parser = subparsers.add_parser('set_ab_metadata',
help='Set A/B metadata.')
sub_parser.add_argument('--misc_image',
help=('The misc image to modify. If the image does '
'not exist, it will be created.'),
type=argparse.FileType('r+b'),
required=True)
sub_parser.add_argument('--slot_data',
help=('Slot data of the form "priority", '
'"tries_remaining", "sucessful_boot" for '
'slot A followed by the same for slot B, '
'separated by colons. The default value '
'is 15:7:0:14:7:0.'),
default='15:7:0:14:7:0')
sub_parser.set_defaults(func=self.set_ab_metadata)
sub_parser = subparsers.add_parser(
'make_atx_certificate',
help='Create an Android Things eXtension (ATX) certificate.')
sub_parser.add_argument('--output',
help='Write certificate to file',
type=argparse.FileType('wb'),
default=sys.stdout)
sub_parser.add_argument('--subject',
help=('Path to subject file'),
type=argparse.FileType('rb'),
required=True)
sub_parser.add_argument('--subject_key',
help=('Path to subject RSA public key file'),
type=argparse.FileType('rb'),
required=True)
sub_parser.add_argument('--subject_key_version',
help=('Version of the subject key'),
type=parse_number,
required=False)
sub_parser.add_argument('--subject_is_intermediate_authority',
help=('Generate an intermediate authority '
'certificate'),
action='store_true')
sub_parser.add_argument('--usage',
help=('Override usage with a hash of the provided '
'string'),
required=False)
sub_parser.add_argument('--authority_key',
help='Path to authority RSA private key file',
required=False)
sub_parser.add_argument('--signing_helper',
help='Path to helper used for signing',
metavar='APP',
default=None,
required=False)
sub_parser.add_argument('--signing_helper_with_files',
help='Path to helper used for signing using files',
metavar='APP',
default=None,
required=False)
sub_parser.set_defaults(func=self.make_atx_certificate)
sub_parser = subparsers.add_parser(
'make_atx_permanent_attributes',
help='Create Android Things eXtension (ATX) permanent attributes.')
sub_parser.add_argument('--output',
help='Write attributes to file',
type=argparse.FileType('wb'),
default=sys.stdout)
sub_parser.add_argument('--root_authority_key',
help='Path to authority RSA public key file',
type=argparse.FileType('rb'),
required=True)
sub_parser.add_argument('--product_id',
help=('Path to Product ID file'),
type=argparse.FileType('rb'),
required=True)
sub_parser.set_defaults(func=self.make_atx_permanent_attributes)
sub_parser = subparsers.add_parser(
'make_atx_metadata',
help='Create Android Things eXtension (ATX) metadata.')
sub_parser.add_argument('--output',
help='Write metadata to file',
type=argparse.FileType('wb'),
default=sys.stdout)
sub_parser.add_argument('--intermediate_key_certificate',
help='Path to intermediate key certificate file',
type=argparse.FileType('rb'),
required=True)
sub_parser.add_argument('--product_key_certificate',
help='Path to product key certificate file',
type=argparse.FileType('rb'),
required=True)
sub_parser.set_defaults(func=self.make_atx_metadata)
sub_parser = subparsers.add_parser(
'make_atx_unlock_credential',
help='Create an Android Things eXtension (ATX) unlock credential.')
sub_parser.add_argument('--output',
help='Write credential to file',
type=argparse.FileType('wb'),
default=sys.stdout)
sub_parser.add_argument('--intermediate_key_certificate',
help='Path to intermediate key certificate file',
type=argparse.FileType('rb'),
required=True)
sub_parser.add_argument('--unlock_key_certificate',
help='Path to unlock key certificate file',
type=argparse.FileType('rb'),
required=True)
sub_parser.add_argument('--challenge',
help='Path to the challenge to sign (optional). If '
'this is not provided the challenge signature '
'field is omitted and can be concatenated '
'later.',
required=False)
sub_parser.add_argument('--unlock_key',
help='Path to unlock key (optional). Must be '
'provided if using --challenge.',
required=False)
sub_parser.add_argument('--signing_helper',
help='Path to helper used for signing',
metavar='APP',
default=None,
required=False)
sub_parser.add_argument('--signing_helper_with_files',
help='Path to helper used for signing using files',
metavar='APP',
default=None,
required=False)
sub_parser.set_defaults(func=self.make_atx_unlock_credential)
args = parser.parse_args(argv[1:])
try:
args.func(args)
except AvbError as e:
sys.stderr.write('{}: {}\n'.format(argv[0], str(e)))
sys.exit(1)
def version(self, _):
"""Implements the 'version' sub-command."""
print(get_release_string())
def extract_public_key(self, args):
"""Implements the 'extract_public_key' sub-command."""
self.avb.extract_public_key(args.key, args.output)
def make_vbmeta_image(self, args):
"""Implements the 'make_vbmeta_image' sub-command."""
args = self._fixup_common_args(args)
self.avb.make_vbmeta_image(args.output, args.chain_partition,
args.algorithm, args.key,
args.public_key_metadata, args.rollback_index,
args.flags, args.prop, args.prop_from_file,
args.kernel_cmdline,
args.setup_rootfs_from_kernel,
args.include_descriptors_from_image,
args.signing_helper,
args.signing_helper_with_files,
args.internal_release_string,
args.append_to_release_string,
args.print_required_libavb_version,
args.padding_size)
def make_icp_from_vbmeta(self, args):
"""Implements the 'make_icp_from_vbmeta' sub-command."""
args = self._fixup_common_args(args)
self.avb.make_icp_from_vbmeta(args.vbmeta_image_path,
args.output, args.algorithm,
args.signing_helper,
args.signing_helper_with_files,
args.version_incremental,
args.transparency_log_servers,
args.transparency_log_pub_keys,
args.manufacturer_key,
args.padding_size)
def append_vbmeta_image(self, args):
"""Implements the 'append_vbmeta_image' sub-command."""
self.avb.append_vbmeta_image(args.image.name, args.vbmeta_image.name,
args.partition_size)
def add_hash_footer(self, args):
"""Implements the 'add_hash_footer' sub-command."""
args = self._fixup_common_args(args)
self.avb.add_hash_footer(args.image.name if args.image else None,
args.partition_size,
args.partition_name, args.hash_algorithm,
args.salt, args.chain_partition, args.algorithm,
args.key,
args.public_key_metadata, args.rollback_index,
args.flags, args.prop, args.prop_from_file,
args.kernel_cmdline,
args.setup_rootfs_from_kernel,
args.include_descriptors_from_image,
args.calc_max_image_size,
args.signing_helper,
args.signing_helper_with_files,
args.internal_release_string,
args.append_to_release_string,
args.output_vbmeta_image,
args.do_not_append_vbmeta_image,
args.print_required_libavb_version,
args.use_persistent_digest,
args.do_not_use_ab)
def add_hashtree_footer(self, args):
"""Implements the 'add_hashtree_footer' sub-command."""
args = self._fixup_common_args(args)
# TODO(zeuthen): Remove when removing support for the
# '--generate_fec' option above.
if args.generate_fec:
sys.stderr.write('The --generate_fec option is deprecated since FEC '
'is now generated by default. Use the option '
'--do_not_generate_fec to not generate FEC.\n')
self.avb.add_hashtree_footer(
args.image.name if args.image else None,
args.partition_size,
args.partition_name,
not args.do_not_generate_fec, args.fec_num_roots,
args.hash_algorithm, args.block_size,
args.salt, args.chain_partition, args.algorithm,
args.key, args.public_key_metadata,
args.rollback_index, args.flags, args.prop,
args.prop_from_file,
args.kernel_cmdline,
args.setup_rootfs_from_kernel,
args.setup_as_rootfs_from_kernel,
args.include_descriptors_from_image,
args.calc_max_image_size,
args.signing_helper,
args.signing_helper_with_files,
args.internal_release_string,
args.append_to_release_string,
args.output_vbmeta_image,
args.do_not_append_vbmeta_image,
args.print_required_libavb_version,
args.use_persistent_digest,
args.do_not_use_ab,
args.no_hashtree)
def erase_footer(self, args):
"""Implements the 'erase_footer' sub-command."""
self.avb.erase_footer(args.image.name, args.keep_hashtree)
def zero_hashtree(self, args):
"""Implements the 'zero_hashtree' sub-command."""
self.avb.zero_hashtree(args.image.name)
def extract_vbmeta_image(self, args):
"""Implements the 'extract_vbmeta_image' sub-command."""
self.avb.extract_vbmeta_image(args.output, args.image.name,
args.padding_size)
def resize_image(self, args):
"""Implements the 'resize_image' sub-command."""
self.avb.resize_image(args.image.name, args.partition_size)
def set_ab_metadata(self, args):
"""Implements the 'set_ab_metadata' sub-command."""
self.avb.set_ab_metadata(args.misc_image, args.slot_data)
def info_image(self, args):
"""Implements the 'info_image' sub-command."""
self.avb.info_image(args.image.name, args.output)
def info_image_icp(self, args):
"""Implements the 'info_image_icp' sub-command."""
self.avb.info_image_icp(args.image.name, args.output)
def verify_image(self, args):
"""Implements the 'verify_image' sub-command."""
self.avb.verify_image(args.image.name, args.key,
args.expected_chain_partition,
args.follow_chain_partitions,
args.accept_zeroed_hashtree)
def calculate_vbmeta_digest(self, args):
"""Implements the 'calculate_vbmeta_digest' sub-command."""
self.avb.calculate_vbmeta_digest(args.image.name, args.hash_algorithm,
args.output)
def calculate_kernel_cmdline(self, args):
"""Implements the 'calculate_kernel_cmdline' sub-command."""
self.avb.calculate_kernel_cmdline(args.image.name, args.hashtree_disabled,
args.output)
def make_atx_certificate(self, args):
"""Implements the 'make_atx_certificate' sub-command."""
self.avb.make_atx_certificate(args.output, args.authority_key,
args.subject_key.name,
args.subject_key_version,
args.subject.read(),
args.subject_is_intermediate_authority,
args.usage,
args.signing_helper,
args.signing_helper_with_files)
def make_atx_permanent_attributes(self, args):
"""Implements the 'make_atx_permanent_attributes' sub-command."""
self.avb.make_atx_permanent_attributes(args.output,
args.root_authority_key.name,
args.product_id.read())
def make_atx_metadata(self, args):
"""Implements the 'make_atx_metadata' sub-command."""
self.avb.make_atx_metadata(args.output,
args.intermediate_key_certificate.read(),
args.product_key_certificate.read())
def make_atx_unlock_credential(self, args):
"""Implements the 'make_atx_unlock_credential' sub-command."""
self.avb.make_atx_unlock_credential(
args.output,
args.intermediate_key_certificate.read(),
args.unlock_key_certificate.read(),
args.challenge,
args.unlock_key,
args.signing_helper,
args.signing_helper_with_files)
if __name__ == '__main__':
tool = AvbTool()
tool.run(sys.argv)